Multi-Martingale Optimal Transport

Tongseok Lim

University of Oxford

2017.04.24

Martingale Optimal Transport (MOT) Problem in One dimension

- $(\Omega, \mathcal{F}, \mathbb{P})$: probability space
- ▶ $X : \Omega \to \mathbb{R}, Y : \Omega \to \mathbb{R}$: random variables
- ▶ cost function $c : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$
- ▶ (marginal constraint) Law(X) = μ , Law(Y) = ν
- ightharpoonup E(Y|X) = X.

Study the one-step martingales (stocks) (X, Y) with prescribed marginals, which **minimize** the expected cost (option price)

$$\min_{X \sim u, Y \sim v, E(Y|X) = X} \mathbb{E}_{\pi} c(X, Y).$$

Motivation:

▶ [Model-free Finance] find the minimum price of option c(x, y) given market information μ, ν , that is, given the prices of call / put options.

A structure result in dimension one

- ▶ Denote $\pi = \text{Law}(X, Y)$
- Let $(\pi_X)_X$ be a disintegration (=conditional probability) of π w.r.t. μ
- $\pi(dx \cdot dy) = \pi_X(dy) \cdot \mu(dx)$

Theorem [Hobson-Neuberger-Klimmek, Beiglböck-Juillet '13]

Assume:

- $ightharpoonup c(x,y) = \pm |x-y|$
- $\mu \ll \mathcal{L}^1$

Then: for μ - a.e. x,

• π_x is concentrated at two boundary points of an interval, i.e. $\pi_x = \lambda \delta_{y^-(x)} + (1 - \lambda) \delta_{y^+(x)}$.

Question: What is a right generalization of this theorem in higher dimension?

Multi-Martingale Optimal Transport (MMOT) Problem [L. '16]

- $(\Omega, \mathcal{F}, \mathbb{P})$: probability space
- $X_i:\Omega\to\mathbb{R},\ Y_i:\Omega\to\mathbb{R}$: random variables, i=1,2,...,d
- ▶ cost function $c: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$
- ▶ (marginal constraint) Law(X_i) = μ_i , Law(Y_i) = ν_i
- ightharpoonup E(Y|X) = X, where $X = (X_1, ..., X_d), Y = (Y_1, ..., Y_d)$

Study the one-step martingales (stocks) (X, Y) with prescribed marginals, which **minimize** the expected cost (option price)

$$\min_{X_i \sim u_i, Y_i \sim v_i, E(Y|X) = X} \mathbb{E}_{\pi} c(X, Y).$$

Motivation:

▶ [Finance] find the minimum price of the option whose value depends on many stocks (X_i, Y_i) , i = 1, ..., d, given the information that can be observed from the market.

Extremal structure of MMOT in general dimension

Theorem [L. '16]

Assume:

- ▶ $\mu_i \leq_c \nu_i$ (convex order)
- $\blacktriangleright \mu_i << \mathcal{L}^1$
- ▶ $c(x,y) = \pm ||x y||$ where $||\cdot||$ is any strictly convex norm on \mathbb{R}^d
- ▶ $\pi = \text{Law}(X, Y) \in P(\mathbb{R}^{2d})$ is any minimizer of MMOT
- $\pi(dx \cdot dy) = \pi_X(dy) \cdot \pi^1(dx),$ where $\pi^1 := \text{Law}(X) \in P(\mathbb{R}^d).$

Then: support of π_x consists of the extreme points of a convex set:

 $\operatorname{supp} \pi_{x} = \operatorname{Ext} \left(\operatorname{conv} (\operatorname{supp} \pi_{x}) \right), \quad \pi^{1} - a.e. x.$

How to obtain such structure result? Study the Dual Optimizer of MOT

• We say that a triple of functions (ϕ, ψ, h) is a dual maximizer of the MOT problem, if for every minimizer π of MOT we have

$$\phi(x) + \psi(y) + h(x) \cdot (y - x) \le c(x, y) \quad \forall x \in \mathbb{R}, \ \forall y \in \mathbb{R},$$

$$\phi(x) + \psi(y) + h(x) \cdot (y - x) = c(x, y) \quad \pi - a.e.(x, y).$$
(2)

• $\phi(x) + \psi(y) + h(x) \cdot (y - x)$ can be interpreted as an optimal subhedging strategy for the option c(x, y).

Irreducibility of (μ, ν) is essential to achieve duality in MOT

- ▶ Beiglböck-Juillet, Beiglböck-Nutz-Touzi showed that in dimension one (d=1), duality is attained if the marginals (μ, ν) are **irreducible**.
- ▶ The irreducibility of (μ, ν) is characterized by their *potential* functions

$$u_\mu(x):=\int |x-y|\,d\mu(y),\quad u_
u(x):=\int |x-y|\,d
u(y).$$

- ▶ This is also where the OT and MOT are divergent: in OT theory essentially no relation between μ, ν is required for duality.
- ► The seemingly harmless linear term $h(x) \cdot (y x)$ drastically changes the picture.

Duality in MMOT (is also attained!)

Theorem [L. '16] Assume:

- (μ_i, ν_i) is irreducible, $\forall i = 1, ..., d$
- $ightharpoonup \pi$ is any minimizer of MMOT

Then: there exist a bunch of functions $\phi_i, \psi_i : \mathbb{R} \to \mathbb{R}$, i=1,...,d, $h : \mathbb{R}^d \to \mathbb{R}^d$ which is a dual maximizer:

$$\sum_{i=1}^{d} \phi_i(x_i) + \sum_{i=1}^{d} \psi_i(y_i) + h(x) \cdot (y-x) \le c(x,y) \quad \forall x \in \mathbb{R}^d, \ \forall y \in \mathbb{R}^d,$$

$$\sum_{i=1}^{d} \phi_i(x_i) + \sum_{i=1}^{d} \psi(y_i) + h(x) \cdot (y-x) = c(x,y) \quad \pi - a.e.(x,y).$$

Duality in MMOT (is also attained!)

Theorem [L. '16] Assume:

- (μ_i, ν_i) is irreducible, $\forall i = 1, ..., d$
- $ightharpoonup \pi$ is any minimizer of MMOT

Then: there exist a bunch of functions $\phi_i, \psi_i : \mathbb{R} \to \mathbb{R}$, i=1,...,d, $h : \mathbb{R}^d \to \mathbb{R}^d$ which is a dual maximizer:

$$\sum_{i=1}^{d} \phi_i(x_i) + \sum_{i=1}^{d} \psi_i(y_i) + h(x) \cdot (y - x) \le c(x, y) \quad \forall x \in \mathbb{R}^d, \ \forall y \in \mathbb{R}^d,$$

$$\sum_{i=1}^{d} \phi_i(x_i) + \sum_{i=1}^{d} \psi(y_i) + h(x) \cdot (y - x) = c(x, y) \quad \pi - \text{a.e.}(x, y).$$

▶ But not only this, we find that Law(X) and Law(Y) also solve a classical dual optimal transport problem:

Law(X), Law(Y) are also optimizers for OT Theorem [L. '16] Assume:

- $(\phi_i, \psi_i, h_i)_{i \leq d}$ is a dual maximizer
- $\pi = \text{Law}(X, Y)$ is any minimizer of MMOT

Then: its induced *d*-copulas π^1 , π^2 (i.e. $\pi^1 = \text{Law}(X)$, $\pi^2 = \text{Law}(Y)$) solve the dual optimal transport problem with respect to the costs α , β respectively:

$$\sum_{i} \phi_{i}(x_{i}) \leq \alpha(x) \quad \mu_{i} - a.e. x_{i}, \text{ and } \sum_{i} \phi_{i}(x_{i}) = \alpha(x) \quad \pi^{1} - a.e. x,$$

$$\sum_{i} \psi_{i}(y_{i}) \geq \beta(y) \quad \nu_{i} - a.e. y_{i}, \text{ and } \sum_{i} \psi_{i}(y_{i}) = \beta(y) \quad \pi^{2} - a.e. y.$$

Law(X), Law(Y) are also optimizers for OT

• $(\phi_i, \psi_i, h_i)_{i < d}$ is a dual maximizer

Theorem [L. '16] Assume:

 \star $\pi = \text{Law}(X, Y)$ is any minimizer of MMOT

Then: its induced *d*-copulas π^1 , π^2 (i.e. $\pi^1 = \text{Law}(X)$, $\pi^2 = \text{Law}(Y)$) solve the dual optimal transport problem with respect to the costs α , β respectively:

$$\sum_{i} \phi_{i}(x_{i}) \leq \alpha(x) \quad \mu_{i} - a.e. \, x_{i}, \text{ and } \sum_{i} \phi_{i}(x_{i}) = \alpha(x) \quad \pi^{1} - a.e. \, x,$$
$$\sum_{i} \psi_{i}(y_{i}) \geq \beta(y) \quad \nu_{i} - a.e. \, y_{i}, \text{ and } \sum_{i} \psi_{i}(y_{i}) = \beta(y) \quad \pi^{2} - a.e. \, y.$$

- ► Here the functions $\alpha: \mathbb{R}^d \to \mathbb{R}$, $\beta: \mathbb{R}^d \to \mathbb{R}$ are naturally defined in terms of the function $y \mapsto \sum_{i=1}^d \psi_i(y_i)$ and are called the martingale Legendre transform. (Ghoussoub-Kim-L. '15)
- ▶ OT theory can enter for the study of the structure of π^1 , π^2 .

Extremal structure of MMOT: norm-type option

Theorem [L. '16]

Assume:

- $\mu_i \leq_{\mathcal{C}} \nu_i$ (convex order)
- $\blacktriangleright \mu_i << \mathcal{L}^1$
- ▶ $c(x, y) = \pm ||x y||$ where $||\cdot||$ is any strictly convex norm on \mathbb{R}^d
- ▶ $\pi = \text{Law}(X, Y) \in P(\mathbb{R}^{2d})$ is any minimizer of MMOT
- $\pi(dx \cdot dy) = \pi_X(dy) \cdot \pi^1(dx),$ where $\pi^1 := \text{Law}(X) \in P(\mathbb{R}^d).$

Then: support of π_x consists of the extreme points of a convex set:

 $\operatorname{supp} \pi_{\mathsf{x}} = \operatorname{Ext} \left(\operatorname{conv} (\operatorname{supp} \pi_{\mathsf{x}}) \right), \quad \pi^{\mathsf{1}} - a.e. \, \mathsf{x}.$

Extremal structure of MMOT: maximum covariance

Example [L. '16] Assume:

- ▶ d = 2 & dual maximizer exists (e.g. (μ_i, ν_i) is irreducible)
- $c(x, y) = -y_1 y_2$ or equivalently $c(x, y) = \frac{1}{2} |y_1 y_2|^2$
- ▶ $\pi = \text{Law}(X, Y) \in P(\mathbb{R}^4)$ is any minimizer of MMOT
- $\pi(dx \cdot dy) = \pi_x(dy) \cdot \pi^1(dx)$, where $\pi^1 := \text{Law}(X) \in P(\mathbb{R}^2)$.

Then: there exists an increasing function $\psi : \mathbb{R} \to \mathbb{R}$ and a function $h : \mathbb{R}^2 \to \mathbb{R}$ such that $Y_2 = \psi(Y_1) + h(X)$.

And: $\pi^1 = \text{Law}(X)$ is the quantile coupling of μ_1, μ_2 (that is, π^1 must be supported on the graph of an increasing function).

Conclusion:

- The duality attainment results presented so far shall serve as the cornerstones for further development of the MOT / MMOT theory, as it did so in the classical OT theory.
- As the classical optimal transport theory (in higher dimensions) has made important contributions to many areas of mathematics and economics, I believe that this new development of probabilistic optimal embedding theory in higher dimensions will have far-reaching consequences as well.

Thank You Very Much!