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Martingale Optimal Transport (MOT) Problem in One
dimension

I (Ω,F ,P) : probability space
I X : Ω→ R, Y : Ω→ R : random variables
I cost function c : R× R→ R
I (marginal constraint) Law(X ) = µ, Law(Y ) = ν

I E(Y |X ) = X .

Study the one-step martingales (stocks) (X ,Y ) with prescribed
marginals, which minimize the expected cost (option price)

min
X∼µ,Y∼ν,E(Y |X)=X

Eπc(X ,Y ).

Motivation:
I [Model-free Finance] find the minimum price of option

c(x , y) given market information µ, ν, that is, given the
prices of call / put options.



A structure result in dimension one
I Denote π = Law(X ,Y )
I Let (πx )x be a disintegration (=conditional probability) of π

w.r.t. µ
I π(dx · dy) = πx (dy) · µ(dx)

Theorem [Hobson-Neuberger-Klimmek, Beiglböck-Juillet
’13]
Assume:

I c(x , y) = ±|x − y |
I µ << L1

Then: for µ - a.e. x ,
I πx is concentrated at two boundary points of an interval,

i.e. πx = λδy−(x) + (1− λ)δy+(x).

Question: What is a right generalization of this theorem in
higher dimension?



Multi-Martingale Optimal Transport (MMOT) Problem
[L. ’16]

I (Ω,F ,P) : probability space
I Xi : Ω→ R, Yi : Ω→ R : random variables, i = 1,2, ...,d
I cost function c : Rd × Rd → R
I (marginal constraint) Law(Xi) = µi , Law(Yi) = νi

I E(Y |X ) = X , where X = (X1, ...,Xd ), Y = (Y1, ...,Yd )

Study the one-step martingales (stocks) (X ,Y ) with prescribed
marginals, which minimize the expected cost (option price)

min
Xi∼µi ,Yi∼νi ,E(Y |X)=X

Eπc(X ,Y ).

Motivation:
I [Finance] find the minimum price of the option whose value

depends on many stocks (Xi ,Yi), i = 1, ...,d , given the
information that can be observed from the market.



Extremal structure of MMOT in general dimension

Theorem [L. ’16]
Assume:

I µi ≤c νi (convex order)
I µi << L1

I c(x , y) = ±||x − y || where
|| · || is any strictly convex norm
on Rd

I π = Law(X ,Y ) ∈ P(R2d ) is any
minimizer of MMOT

I π(dx · dy) = πx (dy) · π1(dx),
where π1 := Law(X ) ∈ P(Rd ).

Then: support of πx consists of the
extreme points of a convex set:

suppπx = Ext
(
conv(suppπx )

)
, π1−a.e. x .

 



How to obtain such structure result? Study the Dual
Optimizer of MOT

I We say that a triple of functions (φ, ψ,h) is a dual
maximizer of the MOT problem, if for every minimizer π of
MOT we have

φ(x) + ψ(y) + h(x) · (y − x) ≤ c(x , y) ∀x ∈ R, ∀y ∈ R,
(1)

φ(x) + ψ(y) + h(x) · (y − x) = c(x , y) π − a.e. (x , y).
(2)

I φ(x) + ψ(y) + h(x) · (y − x) can be interpreted as an
optimal subhedging strategy for the option c(x , y).



Irreducibility of (µ, ν) is essential to achieve duality in
MOT

I Beiglböck-Juillet, Beiglböck-Nutz-Touzi showed that in
dimension one (d = 1), duality is attained if the marginals
(µ, ν) are irreducible.

I The irreducibility of (µ, ν) is characterized by their potential
functions

uµ(x) :=

∫
|x − y |dµ(y), uν(x) :=

∫
|x − y |dν(y).

I This is also where the OT and MOT are divergent: in OT
theory essentially no relation between µ, ν is required for
duality.

I The seemingly harmless linear term h(x) · (y − x)
drastically changes the picture.



Duality in MMOT (is also attained!)
Theorem [L. ’16] Assume:

I (µi , νi) is irreducible, ∀i = 1, ...,d
I π is any minimizer of MMOT

Then: there exist a bunch of functions φi , ψi : R→ R, i=1,...,d,
h : Rd → Rd which is a dual maximizer:

d∑
i=1

φi(xi) +
d∑

i=1

ψi(yi) + h(x) · (y − x) ≤ c(x , y) ∀x ∈ Rd , ∀y ∈ Rd ,

d∑
i=1

φi(xi) +
d∑

i=1

ψ(yi) + h(x) · (y − x) = c(x , y) π − a.e. (x , y).

I But not only this, we find that Law(X ) and Law(Y ) also
solve a classical dual optimal transport problem:
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Law(X ), Law(Y ) are also optimizers for OT
Theorem [L. ’16] Assume:

I (φi , ψi ,hi)i≤d is a dual maximizer
I π = Law(X ,Y ) is any minimizer of MMOT

Then: its induced d-copulas π1, π2 (i.e. π1 = Law(X ),
π2 = Law(Y )) solve the dual optimal transport problem with
respect to the costs α, β respectively:∑

i

φi(xi) ≤ α(x) µi − a.e. xi , and
∑

i

φi(xi) = α(x) π1 − a.e. x ,∑
i

ψi(yi) ≥ β(y) νi − a.e. yi , and
∑

i

ψi(yi) = β(y) π2 − a.e. y .

I Here the functions α : Rd → R, β : Rd → R are naturally
defined in terms of the function y 7→

∑d
i=1 ψi(yi) and are

called the martingale Legendre transform.
(Ghoussoub-Kim-L. ’15)

I OT theory can enter for the study of the structure of π1, π2.
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Extremal structure of MMOT: norm-type option

Theorem [L. ’16]
Assume:

I µi ≤c νi (convex order)
I µi << L1

I c(x , y) = ±||x − y || where
|| · || is any strictly convex norm
on Rd

I π = Law(X ,Y ) ∈ P(R2d ) is any
minimizer of MMOT

I π(dx · dy) = πx (dy) · π1(dx),
where π1 := Law(X ) ∈ P(Rd ).

Then: support of πx consists of the
extreme points of a convex set:

suppπx = Ext
(
conv(suppπx )

)
, π1−a.e. x .

 



Extremal structure of MMOT: maximum covariance

Example [L. ’16] Assume:

I d = 2 & dual maximizer exists ( e.g. (µi , νi) is irreducible)
I c(x , y) = −y1y2 or equivalently c(x , y) = 1

2 |y1 − y2|2

I π = Law(X ,Y ) ∈ P(R4) is any minimizer of MMOT
I π(dx · dy) = πx (dy) · π1(dx), where π1 := Law(X ) ∈ P(R2).

Then: there exists an increasing function ψ : R→ R and a
function h : R2 → R such that Y2 = ψ(Y1) + h(X ).

And: π1 = Law(X ) is the quantile coupling of µ1, µ2 (that is,
π1 must be supported on the graph of an increasing function).



Conclusion:

I The duality attainment results presented so far shall
serve as the cornerstones for further development of
the MOT / MMOT theory, as it did so in the classical OT
theory.

I As the classical optimal transport theory (in higher
dimensions) has made important contributions to
many areas of mathematics and economics, I believe
that this new development of probabilistic optimal
embedding theory in higher dimensions will have
far-reaching consequences as well.



Thank You Very Much!


