Default Contagion and Systemic Risk in the Presence of Credit Default Swaps

(a) Hitotsubashi University

(b) Hokkaido University

(c) Tokyo Metropolitan University

The Fifth Asian Quantitative Finance Conference

The full paper is available at http://ssrn.com/abstract=2853258.

Plan of Talk

- 3 Existence of clearing system
- 4 Numerical Examples

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Introduction

-

Background

 CDS and other credit derivatives are blamed as a major cause of the financial crisis in 2008.

..., in trying to understand the credit crisis, many observers have identified credit default swaps to be a prominent villain (Stulz, 2010).

- The network linkage in financial markets through CDS transactions is said to have amplified the crises.
- Research motivation: to investigate how the cross-holdings of CDSs affect financial stability.

Literature review

- Theoretical papers:
 - Eisenberg and Noe (2001), Suzuki (2002); debt cross-holdings, no default cost.
 - Rogers and Veraart (2013); with default costs
 - Fischer (2014): no default cost, with seniority structure of debts.
- Diffuculty to introduce CDSs: non-monotonicity of payoffs.
 - \Rightarrow Existence of clearing payment vector seems hard to show.
 - No default cost (Suzuki, 2002; Fischer, 2014, El Bitar et al. 2016): Banach's fixed-point theorem = contraction mapping.
 - With default cost (Rogers and Veraart, 2013): Tarski's fixed point theorem = monotone convergence for bounded sequence.

Summary of our paper (1)

Our model:

- Introduce CDS cross-holdings with default costs into Fischer (2014).
- Propose the fictitious default algorithm with financial covenants, reflecting *technical defaults* observed in actual markets (Kusnetsov and Veraart, 2016).
 - Debt service default: the borrower cannot make a scheduled payment.
 - Technical default: another condition such as safety covenant is violated.

	Mean	5%	95%	Ν	
Market assets/Face debt	0.660	0.303	1.221	148	
(Davydenk, 2012)					

イロト イヨト イヨト イヨト

Summary of our paper (2)

Major results:

- Prove the existence of clearing payment vector under the assumption of our algorithm.
- Show with numerical examples that CDS cross-holdings can have a negative impact on financial stability.
 - Cross-ownership of debts; complete graph leads to a more stabile market (Allen and Gale, 2000).
 - Cross-ownership of CDSs; complete graph leads to a default contagion.

Model Setup

Nishide, Suzuki, and Yagi

Systemic Risk with CDS

24 April, 2017 8 / 38

2

Notations

The following notations are used in this talk:

lower	<i>x</i> , <i>y</i> etc.	scalars
lower and bold	x, y, etc.	vectors
upper and bold	X, Y, etc.	matrices

$$\mathbf{0} = (0, \dots, 0)^{\top}, \quad \mathbf{1} = (1, \dots, 1)^{\top}, \quad \mathbf{I} = \begin{pmatrix} 1 & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & & 1 \end{pmatrix},$$
$$\begin{pmatrix} \min\{x_1, y_1\} \end{pmatrix} \qquad \begin{pmatrix} \max\{x_1, y_1\} \end{pmatrix}$$

$$\mathbf{x} \wedge \mathbf{y} = \begin{pmatrix} \vdots \\ \min\{x_n, y_n\} \end{pmatrix}, \quad \mathbf{x} \vee \mathbf{y} = \begin{pmatrix} \vdots \\ \max\{x_n, y_n\} \end{pmatrix}, \quad (\mathbf{x})^+ = \mathbf{x} \vee \mathbf{0},$$

イロト イヨト イヨト イヨト

Banks, banks' business assets, and default costs

- One-shot economy with current and maturity times.
- There are totally *n* banks in the financial market.
- Each bank has its own business (external) asset.
- $\mathbf{e} = (e_1, \dots, e_n)^\top \in \mathbf{R}^n_+$ denotes the vectors of banks' business asset at maturity before default procedure.
- If bank *i* defaults, then its business asset *e_i* is reduced to (1−*c_i*)*e_i*, where *c_i* is a constant. We write

$$\mathbf{C} = \operatorname{diag}(\{c_i\}_{i=1}^n).$$

• Define an $n \times n$ diagonal matrix of default indicators:

$$\boldsymbol{\Delta} = \operatorname{diag}(\{\mathbf{1}_{\mathscr{D}}(i)\}_{i=1}^{n}), \quad \mathbf{1}_{\mathscr{D}}(i) = \begin{cases} 1 & \text{if } i \in \mathscr{D}, \\ 0 & \text{if } i \notin \mathscr{D}, \end{cases}$$

where $\mathscr{D} = \{i \in \{1, \dots, n\} | \text{ bank } i \text{ defaults} \}.$

banks' business asset value with default costs are described as

$$(I - C\Delta)e$$

Nishide, Suzuki, and Yagi

24 April, 2017 10 / 38

Financial securities in the market

- Equities.
- Straight debts:
 - Bank k issues a straight debt with face value \bar{p}^k .
- Credit Default Swaps:
 - Bank *j* writes a CDS with reference bank *k*.
 - λ_{jk} : the ratio of total CDS issuance to the face value \bar{p}^k .
 - If bank k defaults and the payoff of its straight debt is p^k_k, bank j needs to repay λ_{jk}(p^k p^k_k) in total.
 - Contractual repayment should be $d_j^k(p_k^k) = \max \{\lambda_{jk}(\bar{p}^k p_k^k), 0\}$ (default put option).
 - d_j^k is not increasing in p_k^k .

24 April, 2017 11 / 38

A (10) A (10) A (10)

Clearing payments (payoffs)

- Equities:
 - p_k^0 denotes the final payoff of bank k's equity.
- Straight debts:
 - p_k^k denotes the final payoff of bank k's debt with face value \bar{p}_k .
- CDSs:
 - p_j^k denotes the final payoff of d_j^k , the CDS written by *j* with reference bank *k*.
- Write p^k = (p^k₁, p^k₂,..., p^k_n)[⊤] ∈ Rⁿ and define payment vector in the market:

$$\mathbf{p} = \left((\mathbf{p}^0)^\top, (\mathbf{p}^1)^\top, \dots, (\mathbf{p}^n)^\top \right)^\top \in \mathbf{R}^{n(n+1)}$$

< 口 > < 同 > < 回 > < 回 > < 回 > <

Total assets

- Banks cross-hold debts, equities, CDSs issued by other banks.
- Denote by *m^k_{ij}* bank *i*'s proportion of ownership of the CDS issued by bank *j* with reference on bank *k*.
 - Bank *i* has a right to receive $m_{ij}^k \max \{\lambda_{jk}(\bar{p}_k p_k^k), 0\}$ from bank *j*.
- The ownership structure in the interbank market can be written by

$$\mathbf{M}^{k} = \left(m_{ij}^{k}\right)_{i,j=1,\ldots,n} \text{ for } k = 0,\ldots,n.$$

- Note that
 - M⁰ means equity ownership structure.
 - \mathbf{M}^k includes debt ownership structure, $m_{ik}^k, i, k = 1, \dots, n$.
- The total assets of each bank are written by

$$\mathbf{a}(\mathbf{p}; \boldsymbol{\Delta}) = (\mathbf{I} - \mathbf{C}\boldsymbol{\Delta})\mathbf{e} + \sum_{k=0}^{n} \mathbf{M}^{k} \mathbf{p}^{k}.$$

Contract payoff

- d^k(p): contract payment function of debts and CDSs with reference on bank k.
 - Contract debt payment functions are given by

$$d_j^j(\mathbf{p}) = \bar{p}^j, \quad j = 1, \dots, n.$$

Contract CDS payment functions are given by

$$d_j^k(\mathbf{p}) = \lambda_{jk} \left(\bar{p}^k - p_k^k \right)^+, k \neq j$$

where the face values' structure of CDSs

$$\mathbf{\Lambda} = \left(\lambda_{jk}\right)_{j,k=1,\dots,n}$$

represents bank *j*'s issuing proportion of CDS to the face value of bank *k*'s debt.

Sub-senior structure of liabilities

Define φ_j(k) ∈ {1,...,n} to be the order function of repayment of bank *j* with reference on *k*, where

$$\begin{split} \phi_j(k_1) &= 1 \quad \Leftrightarrow \quad \text{bank } j \text{ repays } p_j^{k_1} \text{ first,} \\ \phi_j(k_2) &= 2 \quad \Leftrightarrow \quad \text{bank } j \text{ repays } p_j^{k_2} \text{ second,} \\ &\vdots \\ \phi_j(k_n) &= n \quad \Leftrightarrow \quad \text{bank } j \text{ repays } p_j^{k_n} \text{ last.} \end{split}$$

• The sum of bank *j*'s repayment that is senior to $(d_i^k(\mathbf{p}))$ is give by

$$ar{d}^k_j(\mathbf{p}) = \sum_{\phi_j(k') < \phi_j(k)} d^{k'}_j(\mathbf{p}).$$

 Total amount of bank j's liabilities that are senior to equity is written as

$$\bar{d}_j^0(\mathbf{p}) = \sum_{k=1}^n d_j^k(\mathbf{p}).$$

Clearing payment and default

Definition 1

The vector \mathbf{p} and matrix $\boldsymbol{\Delta}$ are a clearing payment vector and a clearing default matrix, respectively, if

$$egin{aligned} \mathbf{p}^0 &= \left(\mathbf{a}(\mathbf{p}; \mathbf{\Delta}) - \overline{\mathbf{d}}^0(\mathbf{p})
ight)^+, \ \mathbf{p}^k &= \left(\mathbf{a}(\mathbf{p}; \mathbf{\Delta}) - \overline{\mathbf{d}}^k(\mathbf{p})
ight)^+ \wedge \mathbf{d}^k(\mathbf{p}). \end{aligned}$$

The pair $(\mathbf{p}, \boldsymbol{\Delta})$ is said to be a clearing system.

• The equation system in Definition 1 can be expressed as

$$\mathbf{p} = \mathbf{f}(\mathbf{p}; \boldsymbol{\Delta}).$$

• The function **f** reflects the limited liability and priority rule as in Fischer (2014).

Nishide, Suzuki, and Yagi

24 April, 2017 16 / 38

Existence of Clearing System

Nishide, Suzuki, and Yagi

Systemic Risk with CDS

24 April, 2017 17 / 38

3 → 4 3

Fictitious default algorithm with financial covenants

Assumption 1 (Fictitious default algorithm with financial covenants)

At maturity, the clearing default matrix is determined in the following way.

- **0**. Set $\Delta^{(0)} = 0$.
- 1. For the first step:
 - (i) Calculate $\mathbf{p}^{(1)}$ satisfying $\mathbf{p}^{(1)} = \mathbf{f}(\mathbf{p}^{(1)}; \mathbf{\Delta}^{(0)})$.
 - (ii) Set $\mathscr{D}^{(1)} = \{i \in \{1, ..., n\} | p_i^0 = 0\}$, and
 - (iii) Update $\Delta^{(1)} = \text{diag}(\{1_{\mathscr{D}^{(1)}}(i)\}_{i=1}^n).$
- **2**. For the ℓ -th step:
 - (i) Calculate $\mathbf{p}^{(\ell)}$ satisfying $\mathbf{p}^{(\ell)} = \mathbf{f}(\mathbf{p}^{(\ell)}; \mathbf{\Delta}^{(\ell-1)})$.
 - (ii) Set $\mathscr{D}^{(\ell)} = \mathscr{D}^{(\ell-1)} \cup \{i \in \{1, \dots, n\} | p_i^0 = 0\}.$
 - (iii) Update $\Delta^{(\ell)} = \text{diag}(\{1_{\mathscr{D}^{(\ell)}}(i)\}_{i=1}^n).$
- 3. Stop when $\Delta^{(\ell)} = \Delta^{(\ell-1)}$ and set $(\mathbf{p}, \Delta) = (\mathbf{p}^{(\ell)}, \Delta^{(\ell)})$.

Some remarks on our algorithm

- Our algorithm coincides with a generalised clearing vector in Kusnetsov and Veraart (2016).
- A natural assumption for default is

$$\mathscr{D} = \{i \in \{1, \dots, n\} | p_i^0 = 0\}$$

with a clearing payment vector \mathbf{p} as in Elsenberg and Noe (2001) and other related studies.

- Under Assumption 1, the above result does not necessarily hold and it can be that *i* ∈ 𝒴 and *p*⁰_i > 0 at the same time.
 - Once a bank is taken as default in the sequential procedure, it should incur default costs and cannot be solvent for ever.
 ⇒Techincal default.
- $\mathscr{D}^{(\ell)}$ is increasing in ℓ .
 - There always exists a clearing system if we have a vector p such that $p=f(p;\Delta)$ for any $\Delta.$

Contraction mapping

Assumption 2

 $\sum_{i=1}^{n} m_{ij}^k < 1$

for k = 0, ..., n.

Lemma 1

For any given Δ , the equation system $\mathbf{p} = \mathbf{f}(\mathbf{p}; \Delta)$ has a unique solution under Assumption 2.

Sketch of the Proof: For a fixed Δ , **f** is continuous. Further under Assumption 2, the mapping **f** is contractive in l^1 -norm as shown by Fischer (2014). Therefore we can apply Banach's fixed point theorem.

Nishide, Suzuki, and Yagi

Systemic Risk with CDS

24 April, 2017 20 / 38

3 + 4 = +

Main theorem

Theorem 1

There exists a uniquie clearing system under Assumptions 1 and 2.

Proof: The theorem easily follows from Lemma 1 and the monotonicity of $\Delta^{(\ell)}$.

Remark 1

- The result on existence does not depend on Λ, issuing structure of CDSs.
- Banks can issue leveraged CDSs on other banks in our setting. In other words, we do not need to impose the condition λ_{ij} < 1.

A D b 4 A b

Numerical Examples

Nishide, Suzuki, and Yagi

Systemic Risk with CDS

24 April, 2017 22 / 38

3 → 4 3

Simulations

Suppose a multivariate Merton (1974) model.

$$e_i = e_{i0} \exp\left\{\left(\mu - \frac{\sigma^2}{2}\right) + \sigma \varepsilon_i\right\}.$$

 $\operatorname{Corr}[\varepsilon_i, \varepsilon_j] = \rho \text{ for } i \neq j.$

② Conduct Monte Carlo simulations to get

$$ilde{\mathbf{e}}^{(h)} = (ilde{e}_1^{(h)}, \dots, ilde{e}_n^{(h)})^ op$$
 for $h=1,\dots,\eta$,

where η is the number of simulations.

- **③** For each $\tilde{\mathbf{e}}^{(h)}$, obtain the clearing system $(\mathbf{p}, \boldsymbol{\Delta})$ with our algorithm.
- ④ Calculate the probability

 \mathbb{P} {# of defaulted banks is ξ }

for $\xi = 0, 1, ..., n$.

Cross-ownership structure (1)

Three types of financial markets are considered.

• Type A: No cross-ownership.

$$e_{i0} = \bar{g},$$

 $m_{ij}^k = 0.$

• Type B- ℓ_1 : Cross-ownership of debts with ℓ_1 banks for $\ell_1 = 0, 1, \dots, n-1.$
$$\begin{split} \lambda_{jk} &= \begin{cases} 1 & \text{if } j = k, \\ 0 & \text{otherwise}, \\ m_{ij}^k &= \begin{cases} \frac{1}{n} & \text{if } i \in [1, n - \ell_1], j \in [i + 1, i + \ell_1], \text{ and } j = k, \\ & \text{if } i \in [n - \ell_1 + 1, n - 1], j \in [1, i + \ell_1 - n] \cup [i + 1, n], \text{ and } j = k, \\ & \text{if } i = n, j \in [1, \ell_1], \text{ and } j = k, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$
 $e_{i0} = \bar{g} - \ell_1 / n,$

Cross-ownership structure (2)

• Type C- (ℓ_1, ℓ_2) : Cross-ownership of debts among ℓ_1 banks and CDSs among ℓ_2 banks for $\ell_1 = 0, 1, ..., n-1$ and $\ell_2 = 0, 1, ..., n-2$.

$$\begin{split} e_{i0} &= \bar{g} - \ell_1 / n, \\ \lambda_{jk} &= \begin{cases} 1 & \text{if } j = k, \\ \frac{1}{n} & \text{if } j \in [1, n - \ell_2] \text{ and } k \in [j + 1, j + \ell_2], \\ & \text{if } j \in [n - \ell_2 + 1, n - 1] \text{ and } k \in [1, j + \ell_2 - n] \cup [j + 1, n], \\ & \text{if } j = n \text{ and } k \in [1, \ell_2], \\ 0 & \text{otherwise}, \end{cases} \\ \Phi &= \{\phi_j(k)\}_{j,k=1}^n = \begin{pmatrix} 1 & 2 & 3 & \dots & n - 1 & n \\ n & 1 & 2 & \dots & n - 2 & n - 1 \\ \vdots & \ddots & & \vdots \\ 2 & 3 & 4 & \dots & n & 1 \end{pmatrix}, \end{split}$$

24 April, 2017 25 / 38

B N A B N

Cross-ownership structure (3)

• Type C- (ℓ_1, ℓ_2) : Cross-ownership of debts among ℓ_1 banks and CDSs among ℓ_2 banks for $\ell_1 = 0, 1, ..., n-1$ and $\ell_2 = 0, 1, ..., n-2$ (cont.).

$$\begin{split} & \left\{ \begin{array}{ll} \frac{1}{n} & \text{if } i \in [1, n - \ell_1], j \in [i + 1, i + \ell_1], \text{ and } j = k, \\ & \text{if } i \in [n - \ell_1 + 1, n - 1], j \in [1, i + \ell_1 - n] \cup [i + 1, n], \text{ and } j = k, \\ & \text{if } i = n, j \in [1, \ell_1], \text{ and } j = k, \\ & \text{if } i \in [1, n - \ell_2 - 1], j \in [i + 1, i + \ell_2], \text{ and } k = j + 1, \\ & \text{if } i = n - \ell_2, j \in [i + 1, n - 1], \text{ and } k = j + 1, \\ & \text{if } i = n - \ell_2, j = n, \text{ and } k = 1, \\ & \text{if } i \in [n - \ell_2 + 1, n - 1], j \in [1, i + \ell_2 - n], \text{ and } k = j + 1, \\ & \text{if } i \in [n - \ell_2 + 1, n - 1], j = n, \text{ and } k = 1, \\ & \text{if } i \in [n - \ell_2 + 1, n - 1], j \in [i + 1, n - 1], \text{ and } k = j + 1, \\ & \text{if } i = n, j \in [1, \ell_2], \text{ and } k = j + 1, \\ & \text{o therwise.} \end{split}$$

24 April, 2017 26 / 38

Parameter values

• Basecase parameters:

п	number of banks	10
\bar{p}^i	face value of debts	1
\bar{b}	initail value of asset	0.2
c_i	default cost ratio	0.5
μ	growth rate of asset	0.05

- Four cases are considered:
 - Asset volatility $\sigma = 0.2$ or 0.5.
 - Asset correlation $\rho = 0$ or 0.5.
- Number of simulations: $\eta = 100,000$.

24 April, 2017 27 / 38

Default Probabilities (1)

Type B (cross-ownership of debts):

Nishide, Suzuki, and Yagi

Systemic Risk with CDS

24 April, 2017 28 / 38

Default Probabilities (2)

Type C- $(0, \ell_2)$ (no cross-ownership of debts):

Nishide, Suzuki, and Yagi

Systemic Risk with CDS

24 April, 2017 29 / 38

Default Probabilities (3)

Type C- $(3, \ell_2)$ (cross-ownership of debts among 3 banks):

Nishide, Suzuki, and Yagi

Systemic Risk with CDS

24 April, 2017 30 / 38

Default Probabilities (4)

Type C- $(6, \ell_2)$ (cross-ownership of debts among 6 banks):

Nishide, Suzuki, and Yagi

Systemic Risk with CDS

24 April, 2017 31 / 38

Default Probabilities (5)

Type C- $(9, \ell_2)$ (cross-ownership of debts among 9 banks):

Nishide, Suzuki, and Yagi

Systemic Risk with CDS

24 April, 2017 32 / 38

Major observation

- The effect of cross-ownerships:
 - Debts; more stable financial market (Allen and Gale, 2000; Acemuglu et al., 2015).
 - CDSs; unstable financial market with default contagion.
- This is the first study to show that strong connectedness (complete graph) may lead to market vulnerability and increase systemic risk.

→ ∃ > < ∃</p>

Conclusion

Nishide, Suzuki, and Yagi

Systemic Risk with CDS

24 April, 2017 34 / 38

Conclusion

- Extended Fischer (2014) to the model with cross-holdings of CDS as well as banks' default costs and focus on CDS market.
- Proposed fuctitious default algorithm with financial covenants.
- Proved existence theorem for clearing system.
- Showed with numerical examples that the cross-holdings of CDS increase the systemic risk of financial markets.

A B A A B A

References I

- [] Acemuglu, D., A. Ozdaglar, and A. Tahbaz-Salehi (2015), "Systemic Risk and Stability in Financial Networks," *American Economic Review*, **105**(2), 564–608.
- Allen, F. and D. Gale (2000), "Financial Contagion," *Journal of Political Economy*, 108(1), 1–33.
- [2] Davydenko, S. A. (2012), "When Do Firms Default? A Study of the Default Boundary," working paper.
- [3] Eisenberg, L. and T. H. Noe (2001), "Systemic Risk in Financial Systems," *Management Science*, **47**(2), 236–249.
- [4] El Bitar, K., Y. Kabanov, and R. Mokbel (2016), "On Uniqueness of Clearing Vectors Reducing the Systemic Risk," forthcoming in *Informatics and Applications*.
- [5] Fischer, T. (2014), "No-Arbitrage Pricing under Systemic Risk: Accounting for Cross- Ownership," *Mathematical Finance*, 24, 94–124.
- [6] Kusnetsov, M. and L. A. M. Veraart (2016), "Interbank Clearing in Financial Networks," working paper.

References II

- [7] Merton, R. C. (1974), "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," *Journal of Finance*, 29(2), 449–470
- [8] Rogers, L. C. G. and Veraart, L. A. M. (2013), "Failure and Rescue in an Interbank Network," *Management Science*, 59(4), 882–898
- [9] Stulz, R. M. (2010) "Credit Default Swaps and the Credit Crisis," *Journal of Economic Perspectives*, 24(1), 73–92.
- [10] Suzuki, T. (2002), "Valuing Corporate Debt: The Effect of Cross-Holdings of Stock and Debt," *Journal of the Operations Research Society of Japan*, **45**(2), 123–144.

Thank you for your attention

Nishide, Suzuki, and Yagi

Systemic Risk with CDS

24 April, 2017 38 / 38