Recovering Linear Equations of XVA in Bilateral Contracts

Junbeom Lee, Chao Zhou

Department of Mathematics, National University of Singapore

$$\begin{split} dV_t &= \sum_{i=0}^{d+2} \xi_t^i dP_t^i + \sum_{i \in \rho} \eta_t^i dB_t^i + C_t^+ r_t^{c,l} dt - C_t^- r_t^{c,b} dt - dA_t \\ &+ (V_t - C_t - \sum_{i \in \rho^c} \xi_t^i P_t^i)^+ r_t^l dt - (V_t - C_t - \sum_{i \in \rho^c} \xi_t^i P_t^i)^- r_t^b dt, \\ \tilde{X}_t &= e^{-\int_0^t r_s^D ds} X_t, \; \tilde{\kappa} = e^{-\int_0^T r_s^D ds} \kappa, \; Y_t = V_t - C_t, \; \tau = \tau^l \wedge \tau^C, \\ dP_t^i &= P_t^i (r_t dt + \sigma_t^i dW_t), i \in \{0, 1, \dots, d\} \end{split}$$

 $dP_{\star}^{i} = P_{\star}^{i} (r_{\star}dt + \sigma_{\star}^{i}dW_{\star} - dM_{\star}^{i}), i \in \{1, C\}.$

$$\begin{split} -\tilde{Y}_t = &\tilde{C}_t - \int_{t+}^{\bar{\tau}} (B_s^D)^{-1} dA_s + \int_{t+}^{\bar{\tau}} \tilde{f}_s ds + \int_{t+}^{\bar{\tau}} \tilde{m}_s ds \\ &+ \sum_{i=0}^{d+2} \int_{t+}^{\bar{\tau}} \xi_s^i \tilde{P}_s^i \sigma_s^i dW_s^{\mathbb{Q}} - \sum_{i \in \{I,C\}} \int_{t+}^{\bar{\tau}} \int_{\mathbb{R}} \xi_s^i \tilde{P}_s^i z \tilde{\mu}^{i,\mathbb{Q}}, \end{split}$$

$$\begin{split} \tau &= \tau^{I} \wedge \tau^{C}, \bar{\tau} = \tau \wedge T \\ A_{t} &= \mathbb{1}_{(0,\tau)}(t) A_{t}^{c} + \mathbb{1}_{\tau \leq T} \mathbb{1}_{[\tau,T]}(t) \theta_{\tau} \\ \theta_{\tau} &= \varepsilon_{\tau} + \mathbb{1}_{t < \tau^{C} \leq \tau^{I} \wedge T} L_{C} (\varepsilon_{\tau} - C_{\tau-})^{-} - \mathbb{1}_{t < \tau^{I} \leq \tau^{C} \wedge T} L_{I} (\varepsilon_{\tau} - C_{\tau-})^{+} \\ K_{t} &= \left(Y_{t} - \sum_{i \in \rho^{c}} \xi_{t}^{i} P_{t}^{i} \right) \\ \tilde{f}_{t} &= \left(\mathbb{1}_{K_{t} \geq 0} b_{t}^{I} + \mathbb{1}_{K_{t} < 0} b_{t}^{b} \right) \tilde{K}_{t} - \sum_{i \in \rho} b_{t}^{i} \xi_{t}^{i} \tilde{P}_{t}^{i} \\ \tilde{m}_{t} &= \tilde{C}_{t}^{+} b_{t}^{c,I} - \tilde{C}_{t}^{-} b_{t}^{c,b} \end{split}$$

Why?

Goal) Recovering linear BSDEs by comparison of K_t [El Karoui et al., 1997].

Why?) Given that we realize non-negligible spreads between lending/borrowing rates, r_t^l/r_t^b , the value of a derivative is

- 1. explicit solution [Piterbarg, 2010, Bichuch et al., 2015] with the assumption, $r_t^I = r_t^b$ (or $r_t^f = \frac{1}{2}(r_t^I + r_t^b)$)
- 2. numerical approximation
 - Analytical approximation [Gobet and Pagliarani, 2015]
 - Least Square Monte Carlo

The pitfall: Numercial Test for a Call Option

- Call Option
- least square Monte Carlo simulation,
- basis for conditional expectation is second order polynomial
- # of simulation=10000, $\Delta t = 0.025$
- parameters:

γ	σ	r ^l	r ^b	r	T
0	0.2	0.001	0.3	0.005	0.5

The pitfall: Numercial Test for a Call Option

Assumption: What are restricted and not restricted

- Stochastic interest rates.
- Non-Markov
- The condition in our result is about $r_t^{c,b}$, $r_t^{c,l}$ and collateral rule. We do not touch what is given such as r_t^l and r_t^b .
- ▶ Deterministic volatility, spreads. Constant hazard rates.
- ► Immersion Hypothesis
- Complete market
- ▶ $\rho = \emptyset$ for interest rate derivatives and $\rho = \{I, C\}$ for others

Malliavin Calculus

$$\begin{split} - \ \tilde{Y}_{t} = & \tilde{C}_{t} - \int_{t+}^{\bar{\tau}} (B_{s}^{D})^{-1} dA_{s} + \int_{t+}^{\bar{\tau}} \tilde{f}_{s} ds + \int_{t+}^{\bar{\tau}} m(s, \tilde{C}_{s}) ds \\ + \sum_{i=0}^{d+2} \int_{t+}^{\bar{\tau}} \xi_{s}^{i} \tilde{P}_{s}^{i} \sigma_{s}^{i} dW_{s}^{\mathbb{Q}} - \sum_{i \in \{I,C\}} \int_{t+}^{\bar{\tau}} \int_{\mathbb{R}} \xi_{s}^{i} \tilde{P}_{s-}^{i} z \tilde{\mu}^{i,\mathbb{Q}} (ds, dz) \end{split}$$

Lemma

1) If
$$\sigma_t^0 = \sigma_t^I = \sigma_t^C$$
, $\mathbb{1} \cdot (\sigma_t^*)^{-1} D_t \tilde{Y}_t = \sum_{i=0}^{d+2} \xi_t^i \tilde{P}_t^i$

2) If
$$\sigma_t^I = \sigma_t^C = 0$$
, $\mathbb{1} \cdot (\sigma_t^*)^{-1} D_t \tilde{Y}_t = \sum_{i=0}^{d} \xi_t^i \tilde{P}_t^i$.

3) For
$$i \in \{I, C\}$$
, $-D_{i,t,1}\tilde{Y}_t = \xi_t^i \tilde{P}_t^i$.

Comparison

$$\begin{split} -\tilde{Y}_{t} = & J_{t} + \int_{t+}^{\bar{\tau}} \left(b_{s}^{l} \mathbb{1}_{K_{s} \geq 0} + b_{s}^{b} \mathbb{1}_{K_{s} < 0} \right) \left(\tilde{Y}_{s} - \sum_{i=0}^{d+2} \xi_{s}^{i} \tilde{P}_{s}^{i} \right) ds \\ & + \sum_{i=0}^{d+2} \int_{t+}^{\bar{\tau}} \xi_{s}^{i} \tilde{P}_{s}^{i} \sigma_{s}^{i} dW_{s}^{\mathbb{Q}} - \sum_{i \in \{I,C\}} \int_{t+}^{\bar{\tau}} \int_{\mathbb{R}} \xi_{s}^{i} \tilde{P}_{s}^{i} z \tilde{\mu}^{i,\mathbb{Q}}, \\ -D_{t} \tilde{Y}_{t} = & D_{t} J_{t} + \int_{t+}^{\bar{\tau}} \left(b_{s}^{l} \mathbb{1}_{K_{s} \geq 0} + b_{s}^{b} \mathbb{1}_{K_{s} < 0} \right) \left(D_{s} \tilde{Y}_{s} - \sum_{i=0}^{d+2} D_{s} (\xi_{s}^{i} \tilde{P}_{s}^{i}) \right) ds \\ & + \sum_{i=0}^{d+2} \int_{t+}^{\bar{\tau}} D_{s} (\xi_{s}^{i} \tilde{P}_{s}^{i}) \sigma_{s}^{i} dW_{s}^{\mathbb{Q}} - \sum_{i \in \{I,C\}} \int_{t+}^{\bar{\tau}} \int_{\mathbb{R}} D_{s} (\xi_{s}^{i} \tilde{P}_{s}^{i}) z \tilde{\mu}^{i,\mathbb{Q}} \end{split}$$

A.
$$\tilde{\varepsilon}_t = \mathbb{E}(\int_{t+}^T B_s^{-1} dA^c | \mathcal{F}_t)$$
 and $\tilde{C}_t = \gamma \tilde{\varepsilon}_t$, where $0 \leq \gamma \leq 1$

B.
$$\tilde{\varepsilon}_t = \tilde{V}_t$$
 and $\tilde{C}_t = \gamma \tilde{V}_t$, where $0 \leq \gamma \leq 1$

Main result: $ilde{arepsilon}_t = \mathbb{E}(\int_{t+}^T B_s^{-1} dA^c | \mathcal{F}_t)$ and $ilde{\mathcal{C}}_t = \gamma ilde{arepsilon}_t$

$$\tilde{J}_t = \tilde{C}_t - \int_{t+}^{\bar{\tau}} (B_s^D)^{-1} dA_s + \int_{t+}^{\bar{\tau}} m(s, \tilde{C}_s) ds.$$
 (1)

Proposition

Let $t < \tau$ and \mathbb{Q} be an equivalent martingale measure with B_t^D as the numéraire. Assume

- (i) $\tilde{J}_t \in \mathbb{D}^{1,2}$ for all $t \in [0, \bar{\tau}]$,
- (ii) for all $t \in [0, \bar{\tau}]$, $k \in \{0, 1, ..., d\}$, $i, j \in \{I, C\}$

$$\begin{split} \mathbb{E}^{\mathbb{Q}}\left(\int_{0}^{\bar{\tau}}|D_{k,s}\tilde{J}_{t}|^{2}ds\right) &< \infty, \\ \mathbb{E}^{\mathbb{Q}}\left(\int_{0}^{\bar{\tau}}|D_{i,s,1}\tilde{J}_{t}|^{2}\lambda^{j,\mathbb{Q}}ds\right) &< \infty, \end{split}$$

Proposition

- (iii) $\mathbb{1} \cdot (\sigma_u^*)^{-1} D_u \tilde{J}_t \geq \tilde{J}_t$ a.s for all $u \leq t$,
- (iv) If $\sigma_t^0 = \sigma_t^I = \sigma_t^C$, $\rho = \emptyset$. Otherwise $\rho = \{I, C\}$,
- (v) for $i \in \{I, C\}$, when $i \in \rho$, $b_t^i \le \lambda^{i, \mathbb{Q}}$, otherwise $b_t^b \le \lambda^{i, \mathbb{Q}}$ (A stronger condition which is easier to check is that $\tilde{f}(t, y, z, z^I, z^C)$ is non-decreasing with respect to z^I and z^C),

Then \tilde{Y}_t is a unique solution of linear BSDE:

$$\begin{split} -\tilde{Y}_t = &\tilde{J}_t + \int_{t+}^{\bar{\tau}} b_s^b (\tilde{Y}_s - \sum_{i \in \rho^c} \xi_s^i \tilde{P}_s^i) - \sum_{i \in \rho} b_s^i \xi_s^i P_s^i ds \\ &+ \sum_{i=0}^{d+2} \int_{t+}^{\bar{\tau}} \xi_s^i \tilde{P}_s^i \sigma_s^i dW_s^{\mathbb{Q}} - \sum_{i \in \{I,C\}} \int_{t+}^{\bar{\tau}} \int_{\mathbb{R}} \xi_s^i \tilde{P}_{s-}^i z \tilde{\mu}^{i,\mathbb{Q}} (ds, dz). \end{split}$$

Example: Stock Forward

Example (Stock Forward)

► The assets follow the following dynamics

$$\begin{split} dS_t &= r_t S_t dt + \sigma S_t dW_t \\ dP_t^I &= r_t P_t^I dt - P_{t-}^I dM_t^I \\ dP_t^C &= r_t P_t^C dt - P_{t-}^C dM_t^C \,, \end{split}$$

where r_t is deterministic and σ is constant,

- ► $A_t^c = \mathbb{1}_{[T]}(t)(S_T \kappa).$
- $r_t^{c,l} \le r_t = r_t^{c,b} \text{ (or } \gamma = 0),$
- $r_t^i \leq \lambda^i + r_t$ for $i \in \{I, C\}$.

Example: Interest Rate Swap

Example (Interest rate swap)

► The assets follow:

$$dP_t^i = P_t^i(r_t dt + \sigma^i dW_t), i \in \{0, 1, \dots, d\}$$

$$dP_t^i = P_{t-}^i(r_t dt + \sigma^i dW_t - dM_t^i), i \in \{I, C\}.$$

- $A_t^c = \mathbb{1}_{[T]}(t)\Phi(P_T) = \mathbb{1}_{[T]}(t)(1 P_T^d \kappa \sum_{i=1}^{\infty} \delta_i P_T^i).$
- ▶ If short rate process, r_t , will follow the dynamics: $dr_t = \beta(t, r_t)dt + \sigma^r dW_t$, where $\beta : [0, T] \times \mathbb{R} \to \mathbb{R}$ σ^r is assumed to satisfy the condition that

$$1+1\cdot(\sigma^*)^{-1}\int_t^T(\sigma^r)^*ds\leq 0,\quad \text{a.s.}$$

$$\left(\text{In Vasicek, }1+(\sigma)^{-1}\int_t^T\sigma^rds=1-\frac{a(T-t)}{1-e^{-a(T-t)}}\leq 0\right)$$

$$ilde{arepsilon}_t = ilde{V}_t$$
 and $ilde{C}_t = \gamma ilde{V}_t$

$$\begin{split} -\tilde{V}_t = &\tilde{J}_t + \int_t^{\bar{\tau}} (\mathbb{1}_{K \geq 0} b_s^I + \mathbb{1}_{K < 0} b_s^b) \left(\tilde{V}_s (1 - \gamma) - \sum_{i \in \rho} \xi_s^i \tilde{P}_s^i \right) ds \\ &- \int_t^{\bar{\tau}} \sum_{i \in \rho^c} b_s^i \xi_s^i \tilde{P}_s^i ds \\ &+ \int_{t+}^{\bar{\tau}} a_s^1 \tilde{V}_s^+ - a_s^2 \tilde{V}_s^- ds + \sum_{i=0}^{d+2} \int_{t+}^{\bar{\tau}} \xi_s^i \tilde{P}_s^i \sigma_s^i dW_s^{\mathbb{Q}}, \end{split}$$

where $\tilde{J}_t = -\int_{t+}^{\bar{\tau}} (B_s^D)^{-1} dA_s^c$, $a_t^1 = \lambda^{I,\mathbb{Q}} L_I (1-\gamma) + b_t^{c,I} - \lambda^{\mathbb{Q}}$ and $a_t^2 = \lambda^{C,\mathbb{Q}} L_C (1-\gamma) + b_t^{c,b} - \lambda^{\mathbb{Q}}$. Note that both a_t^1 and a_t^2 are deterministic.

Lemma

Consider the following BSDE

$$-\tilde{V}_t = \tilde{\zeta} + \int_t^{\bar{\tau}} a_s^1 \tilde{V}_s^+ - a_s^2 \tilde{V}_s^- ds + \int_t^{\bar{\tau}} \tilde{Z}_s dW_s^{\mathbb{Q}}. \tag{2}$$

Assume $\zeta \leq 0$, $\zeta \in \mathbb{L}_T^2$ and a_t^i are processes that makes the generator standard. Then $\tilde{V}_t \geq 0$.

Proof.

Let us consider the following BSDEs

$$-\tilde{V}'_{t} = \int_{t}^{\bar{\tau}} a_{s}^{1} \tilde{V}'^{+}_{s} - a_{s}^{2} \tilde{V}'^{-}_{s} ds + \int_{t}^{\bar{\tau}} \tilde{Z}'_{s} dW_{s}^{\mathbb{Q}}.$$
 (3)

Then $(\tilde{V}'_t, \tilde{Z}'_t) = (0,0)$ is the unique solution of (3). Therefore, proof is done by applying comparison principle to (2) and (3).

Example: Put Option on a Stock

Example (Put option on a stock)

We assume

► The assets follow the dynamics:

$$\begin{split} dS_t &= r_t^I S_t dt + \sigma S_t W_t^{\mathbb{Q}} \\ dP_t^I &= r_t^I P_t^I dt - P_{t-}^I dM_t^{I,\mathbb{Q}} \\ dP_t^C &= r_t^C P_t^C dt - P_{t-}^C dM_t^{C,\mathbb{Q}}, \end{split}$$

under a new probability, \mathbb{Q} .

- $ightharpoonup A_t^c = \mathbb{1}_{[T]}(t)(\kappa S_T)^+$. Therefore, $\tilde{\varepsilon}_t = \tilde{c}(t, S_t)$
- $r_t^{c,l} \le r_t^l \le r_t^b.$

Example: Floating Strike Asian Call Option

Example (Floating strike Asian call option)

► The assets follow the dynamics:

$$dS_t = r_t^I S_t dt + \sigma S_t W_t^{\mathbb{Q}}$$

$$dP_t^I = r_t^I P_t^I dt - P_{t-}^I dM_t^{I,\mathbb{Q}}$$

$$dP_t^C = r_t^C P_t^C dt - P_{t-}^C dM_t^{C,\mathbb{Q}},$$

under a new probability, \mathbb{Q} .

- ► $A_t^c = \mathbb{1}_{[T]} \Phi(S_T) = \mathbb{1}_{[T]}(t)(S_T \kappa A(0, T))^+$ where $A(0, T) = \exp\left(\frac{1}{T} \int_0^T \ln(S_u) du\right)$
- $r_t^{c,l} \leq r_t^l \leq r_t \leq r_t^b.$

REMARK: Extensibility and Weakness

Remark

• (Carr-Madan decomposition) For any $f \in \mathcal{C}^2(\mathbb{R})$

$$f(S) = f(\kappa) + f'(\kappa)(S - \kappa) + \int_{-\infty}^{\kappa} f''(K)(K - S)dK + \int_{\kappa}^{\infty} f''(K)(S - K)dK$$

▶ If a function f has a bounded Hessian on $A \subset \mathbb{R}^d$, it can be decomposed into the sum of a convex function and a concave function. [Yuille et al., 2002]

Thank you!

Bichuch, M., Capponi, A., and Sturm, S. (2015). Arbitrage-free pricing of xva–part i: Framework and explicit examples. *Available at SSRN*.

El Karoui, N., Peng, S., and Quenez, M. C. (1997). Backward stochastic differential equations in finance. *Mathematical finance*, 7(1):1-71.

Gobet, E. and Pagliarani, S. (2015). Analytical approximations of bsdes with nonsmooth driver. *SIAM Journal on Financial Mathematics*, 6(1):919–958.

Piterbarg, V. (2010). Funding beyond discounting: collateral agreements and derivatives pricing. *Risk*, 23(2):97.

Yuille, A. L., Rangarajan, A., and Yuille, A. (2002). The concave-convex procedure (cccp). *Advances in neural information processing systems*, 2:1033–1040.