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dP} = Pi(redt + oidW;),i € {0,1,...,d}
dP} = P{_(redt + o}dW; — dM}),i € {1, C}.
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Goal) Recovering linear BSDEs by comparison of K;
[El Karoui et al., 1997].

Why?) Given that we realize non-negligible spreads between
lending/borrowing rates, r!/rP, the value of a derivative is
1. explicit solution [Piterbarg, 2010, Bichuch et al., 2015] with
the assumption, r{ = rf (or rf = (rl +rf))
2. numerical approximation

» Analytical approximation [Gobet and Pagliarani, 2015]
» Least Square Monte Carlo
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The pitfall: Numercial Test for a Call Option

v

Call Option

least square Monte Carlo simulation,

v

v

basis for conditional expectation is second order polynomial
# of simulation=10000, At = 0.025

> parameters:

v

01]0.21]0.001|03]0.005]|0.5
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The pitfall: Numercial Test for a Call Option

relative error
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Assumption: What are restricted and not restricted

» Stochastic interest rates.
» Non-Markov

o . b cl
» The condition in our result is about r;"”, r;”" and collateral
rule. We do not touch what is given such as r/ and rP.

» Deterministic volatility, spreads. Constant hazard rates.
» Immersion Hypothesis
» Complete market

v

p = 0 for interest rate derivatives and p = {/, C} for others
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Malliavin Calculus
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Lemma

d+2
1) Ifo? =0l =0C, 1-(07)71D, Y, = Z&P’

2) Ifol =o€ =0,1-(07)1D: Vs = Z&il"’i-

3) Forie {l,C}, —Dj a1 Y. = 57’:'55
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Comparison

7 . d+2 L
VY =J + /+(b;]1,<520 + bP1 k. <o) (Ys -y §;P;> ds
t

i=0
a+2 7 7 .
+3 [ gPiolawe— Y [ [ eipizi,
i=0 Jt+ ie{l,cy’/t+ /R
~ 7_- ~ d+2 .o~
t i=0
d+2 .z L F o )
+3° [ DueiPhriaw@— S [ [ Du(elPzri
i=0 Y t+ ie{r,cy/tt /R

Junbeom Lee, Chao Zhou Recovering Linear Equations of XVA in Bilateral Contracts



E(ft:— B 1dA°|F;) and C; = v&;, where 0 <y < 1

>
M

-
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B. & = \7t and &t:'th, where 0 <y <1
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Jp = Et—/ (BSD)_ldAer/ m(s, C.)ds. (1)
t+ t+

Let t < 7 and Q be an equivalent martingale measure with BP as
the numéraire. Assume

(i) J; € D2 for all t € [0,7],
(ii) for all t € [0,7], k € {0,1,...,d}, i,j € {l,C}

E® (/ \Dk,sjt\zds) < o0,
0

EQ (/ |D,-,s,13t|2>\f’st) < 00,
0
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Proposition

(iii) 1-(0%)*DyJs > Jy a.s for all u < t,

(iv) Ifo¥ = ol =0, p=10. Otherwise p = {I, C},

(v) fori € {l,C}, when i€ p, b < \'Q, otherwise b? < \'Q

(A stronger condition which is easier to check is that

f I.z%) is non-decreasing with respect to z' and z€),

f(t.y,z,z
Then Y; is a unique solution of linear BSDE:
~ ~ 7- ~ .~ . . .
Vet [ BE(Ve— Y 6P - Y biciPlds
t+

i€pc i€p
d+2

+ / Plgl dW@ — / / iBi_27iQ(ds, dz).
; L& 2 |, J&Pe2iS(ds, d2)

ie{l,C}

v
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Example: Stock Forward

Example (Stock Forward)

> The assets follow the following dynamics

dSt = rtStdt + O'Stth
dP! = r,Pldt — P!_dM!
dPE = rPSdt — PE dMS,

where r; is deterministic and o is constant,
A = 1 (t)(ST — K).

p={l,C}

rel < r=rfP (or v =0),

ri < XN +r forie{l C}

v

v

v

v
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Example: Interest Rate Swap

Example (Interest rate swap)

» The assets follow:
dP} = Pi(redt + o'dW;),i € {0,1,...,d}
dﬂ::ﬂ_hﬁt+a%%@—dMDJf{LC}
> AL =1n(t)e(Pr) = r(t)(L — P§ — KD 0iPT).
i=1
> If short rate process, r;, will follow the dynamics:
dre = B(t, re)dt + o"dW;, where 5: [0, T] x R - R 0" is
assumed to satisfy the condition that

§
1+14fy4/(ay¢go,a&
t

-
: -1 r 1 a(T — t)
(In Vasicek, 1+ (o) /t o'ds=1 1= a0 <0)

o’
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Ve =J; +/t (Lxsobl + Lx<ob?) (‘75(1 —7) - Zfé’s;) ds

ep
T s
— / > bitiPlds
t i€p©
7 ~ ~ d+2 .z L
+ / AV -2V ds+ Y / ¢ PigTdWe,
t+ i=0 t+

where J; = — [ (BP)"1dAS, a} = MN'RLy(1 —~) + by — AQ and
a2 = AGQLc(1—7) 4 bSP — AR, Note that both a! and a? are
deterministic.
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Lemma

Consider the following BSDE
V=l [ AU -V ds+ [ Zaw® ()
t t

Assume ( <0, ¢ € L2 and a} are processes that makes the
generator standard. Then V; > 0.

Proof.
Let us consider the following BSDEs

- / ALV — 20 ds + / Zawe. 3)
t t

Then (V/, Z!) = (0,0) is the unique solution of (3). Therefore,
proof is done by applying comparison principle to (2) and (3). [
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Example: Put Option on a Stock

Example (Put option on a stock)

We assume
» The assets follow the dynamics:
dSt zrtIStdt TF O'Sf_- WtQ
dP! =r!pPldt — P!_dm!®
dPE =rEPEdt — PE dMES,

under a new probability, Q.

» p={l,C},
» A(lf = ]l[T](t)(l/{, = ST)+. Therefore, gt = E(t, St)

I}
>l <rd <
v
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Example: Floating Strike Asian Call Option

Example (Floating strike Asian call option)
» The assets follow the dynamics:

dSt :rl{stdt T 0'51_- W;Q
dP! =rlpPldt — P!_dm!®
dPE =rCPCdt — PE dMS®,

under a new probability, Q.

> AS = 1y ®(ST) = 1(71(£)(ST — KA(0, T))™ where
A0, T) = exp (4 f In(Su)du)

» p={/,C}

» ol < rl<r <rb.
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REMARK: Extensibility and Weakness

» (Carr-Madan decomposition) For any f € C?(R)

f(S) =f(x) + f'(x)(S — K)+
/F" FIKY(K — S)dK + /oo F1(KY(S — K)dK

» If a function f has a bounded Hessian on A C R9, it can be

decomposed into the sum of a convex function and a concave
function. [Yuille et al., 2002]
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Thank you!

Junbeom Lee, Chao ZI
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