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Introduction

In finance, we often encounter the quantity of the form:

,
pr = EF[e  Jo XD dtF(x] .

Purpose: to conduct a sensitivity analysis for the quantity pr with
respect to the perturbation of X for large T.

This sensitivity is useful for long-term static investors and for long-dated
option prices.
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Introduction

Let (Q,FF, F,P) be a filtered probability space that has a d-dimensional
Brownian motion B with the filtration F = (F;)¢>0 generated by the B.

i

Let b: RY — RY and o : RY — RY*9 be continuous functions and
¢ € RY. The matrix o is invertible. Assume that the stochastic differential
equation (SDE)

dXt = b(Xt) dt + O'(Xt) dBt ) Xo = f

has a unique strong solution X and that the solution is non-explosive.
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Introduction

The function r : RY — R is a continuous function. \

The function f : R — R is non-negative non-zero measurable.

Given a quadruple of functions (b, o, r, f) and ¢ € R satisfying Al - 3,
the quantity of interest is

pr = E?[e‘ I (X dtex )] .
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Introduction

For the sensitivity w.r.t. the initial value Xg = £, we compute

9pr
0%

and investigate the behavior of this quantity for large T.

e Why is this an important problem to finance?

@ Hedging market risk
@ How vulnerable to model calibration?
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Introduction

Let X{ be a perturbed process of X;
dXi = be(X5) dt + o (XF) dWe , X5 =€ .
The perturbed quantity is given by
py 1= EF[e o X (x5)].
For the sensitivity analysis, we compute

o ;
O€|._o PT

and investigate the behavior of this quantity for large T.
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Hansen-Scheinkman decomposition
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Hansen-Scheinkman decomposition

Fix a quadruple of functions (b, o, r, f) and ¢ € R satisfying Al - 3.
Consider a pricing operator P by

Prf(x) = Ef(e™ 10 "0 % (Xr))

so that the expectation is pr = Prf(§). For a positive measurable
function ¢ and a real number X such that

Pro(x) =e Mo(x) for T>0,xcR?, (2.1)

the process

M¢ = )\tfftr(Xs)ds (b(Xt), O< t< T
R G

is a positive martingale.
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Hansen-Scheinkman decomposition

A measure Q? on each Fr defined by
Q*(A) = E{(1aM?)
for A € Fr is called the eigen-measure with respect to ¢.
This definition is well defined on an infinite horizon because
Ef (IaM{) = Eg (1aMY)

forany Aec Fsand 0 <s < t.
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Hansen-Scheinkman decomposition

There exists a pair (A, ¢) of a real number A and a positive measurable
function ¢ satisfying Eq.(2.1) such that the process X is recurrent under
the eigen-measure Q°.

-
In this case, the discount factor e~ Jo r(Xe)dt can be written as

ST r(x) ()
¢ =M S

This expression is referred to as the Hansen-Scheinkman decomposition.
We say that (), ¢), A, ¢ and Q7 are the recurrent eigenpair, recurrent
eigenvalue, recurrent eigenfunction and recurrent eigen-measure,
respectively.
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Hansen-Scheinkman decomposition

A recurrent eigenpair may not exist.
The recurrent eigenpair (\, ¢) is unique if existent.

Thus, we use notations M and Q instead of M? and Q?, respectively.

(i) Long-Term Risk: An Operator Approach, L. P. Hansen and J.A.
Scheinkman, Econometrica, 2009

(ii) Positive Eigenfunctions of Markovian Pricing Operators:
Hansen-Scheinkman Factorization, Ross Recovery, and Long-Term
Pricing. L. Qin and V. Linetsky, Operations Research, 2016
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Hansen-Scheinkman decomposition

Ab

The recurrent eigenfunction ¢ is continuously twice differentiable.

A6

| A

The process X has an invariant distribution v under Q.

| A

A7

The function f is v-ergodic, that is, f satisfies

EE(f/¢)(XT) — /(f/gb) dv as T — o0,

and the limit is a finite number.
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Hansen-Scheinkman decomposition

In summary, for any given quadruple of functions (b, o, r, ) and initial
value ¢ € RY satisfying Al - 7, we have constructed

X, P’ M7 Q? (>\7¢)7 (707 V.
Then

pr = EE(e o "o (X)) = ¢(¢) e AT - BE(Mr (F/6)(X7))
=¢(&) e -EE(F/)(XT) .
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Hansen-Scheinkman decomposition

What is it good for?

1) Large-time behavior:

1
lim —I = -\
fm, 7 ner

2) Dependence on the marginal distributions
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Sensitivity analysis: Delta

The delta: Intuitively,

pr =~ T ¢(€)

so that Ve
Vel ~ &

ST

Observe that

Vepr _ Veo VEE?(f/¢)(XT)
pr o #&)  EX(F/e)(X7)

Need to control: as T — o0,

Velnpr =

VeEZ(F/)(XT)
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Sensitivity analysis: Delta

Propositioin 3.1

Let (b,o,r,f) and £ be a quadruple of functions and an initial value,
respectively, satisfying Al - 7. Assume that the functions b+ o and o
are continuously differentiable with bounded derivatives and that b + oy
satisfies the uniform-ellipticity condition. If there exist positive constants
p>2and g with 1/p+1/q = 1 such that EZ|o~1(X7) Y7|? and

Eé@(f/qb)q(X-r) are bounded on 0 < T < oo, then ]E?(f/qﬁ)(XT) is
continuously differentiable by £ and V¢ E?(f/qﬁ)(XT) —0as T — o0.

Here, Y: = (Yijt)i<ij<d = (%)Ki,jéd is the first variation process
d
d)/l'j,t = (b + U@);(Xt))/u,t dt -+ Z U?k(Xt)\/ij,t dBk,t N YO = Id
k=1

and || - | the matrix 2-norm.
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Sensitivity analysis

The rho and vega: Sensitivity with respect to the drift and volatility:

dXf = be(XE) dt + o (X{) dB: , X§ = &

Let be(x), oe(x), re(x), f.(x) be functions of variable (¢, x) € I x R? for a
neighborhood / of 0 such that for each x, they are continuously
differentiable on € € I and by(x) = b(x), oo(x) = o(x), ro(x) = r(x),
fo(x) = f(x). Let & be a continuously differentiable function of variable

e €l and & = €.
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Sensitivity analysis

For each e € I, the quadruple of functions (b, o, re, f.) and initial value &
satisfy Al - 7.

The meanings of the following objects are self-explanatory:
X, P, M<, QF, ()\67¢6)7 Pey Ve -

We are interested in the perturbed quantity
T, (xe
pr =g (el DFR(Xp))

and the long-term behavior of its sensitivity %L:O In p5-.
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Sensitivity analysis

Heuristics: when T is large, the term e M7

quantity p%,

dominates the perturbed

pr = e M pee(¢).
We may then expect

Q IRY. —AT —AT ﬁ
pe| P = NOT-eToe) + e o o)
Thus,
19 € _ 1 86‘6 OPT ~ /
T 0e 6_0|nPT— -,-T X'(0)
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Sensitivity analysis

The expectation p7 is

€

pr = e T o () B (/0 (XT).

Then
o)
;a?e  Inpr=- 2| A+867f—‘;;?£§&)
a@t 5 5(f/¢e)(XT)+ a@\ B2 (f/¢)(X5)
T-EZ(f/0)(X7) EQ(f/6)(X7)
Need to control:
gc | _ B (F/0)(X7)
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Sensitivity analysis: Rho

The rho : Let (b, 0,1, f.) and & be a quadruple of functions and an
initial value, respectively, satisfying B1 - 2.

The perturbed process X€ is
dXi = b (X{) dt + o(X{) dBy, X5 = &e.

Define k. := 0 1b. + ¢, and k := kg.
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Sensitivity analysis: Rho

Let (b, 0, re, f) and & be a quadruple of functions and an initial value,
respectively, satisfying B1 - 2. Assume that V ¢.(x) (thus, ke(x)) is
continuously differentiable by € on | for each x and that there exists a
function g : RY — R such that lake | < g(x) on (e,x) € 1 x RY,
Suppose that the following conditions hold.

(i) There exist positive constants a, ¢ and € such that for all T >0
E?eeo fOT g%(Xs) ds <c eaT )

There exist positive constants p > 2 and q with 1/p+1/q = 1 satisfying
the following:

(ii) For each T > 0, there is a positive number € such that
Eé@ foT gPT(Xy) dt is finite.

(iii) E?(f/(j))q(X-r) is bounded on 0 < T < 0.

o
(B
4o
N
\




Sensitivity analysis: Rho

Theorem 2 (Continued)

Then, ]E?e(fﬂb)(X%) is continuously differentiable on € € / and

i 1 0
m — —
T—oo T Oe€

OE?E(f/eé)(X%) =0

€=l

is obtained.
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Sensitivity analysis: Vega

The vega

1st approach: Malliavin calculus with bounded-derivative coefficients.
Classical approach for sensitivity analysis

2nd approach: the Lamperti transform for univariate processes. It converts
the perturbation of the diffusion term into the drift and the initial value.
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Sensitivity analysis: Vega

Conclusion:

Initial value perturbation: eigenfunction determines the zeroth-order
growth rate
Veo

¢(¢)

Drift and volatility perturbations: eigenvalue determines first-order growth
rate

lim V¢lIn =
Tlﬁoo ¢inpT

lim — 9 In p$ = -\ (0)
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Examples

1) Bond prices
2) Expected utilities
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Examples: Bond prices

1) Bond prices: The CIR short-interest rate model

Under a risk-neutral measure P, the interest rate r; follows
dry = (0 — are) dt + 0\/r: dB: , 260 > o2.
The short-interest rate option price
pr = TEF[e~ o "9t f(rr)]
This is the bond price when f = 1.

Want to know the behavior for large T of

opr  Opr Opr
00 ' 0a ' 0o
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Examples: Bond prices

Assume: f(r) is a nonzero nonnegative continuous function on r € [0, c0)
with the polynomial growth rate.

The associated second-order equation is
1
Lo(r) = 50%r¢"(r) + (0 — an)¢/ (r) = ré(r) = =A6(r) .
The recurrent eigenvalue and its eigenfunction are

(N, o(r)) == (0K, e ")
where k := 7“’2?;‘2_3
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Examples: Bond prices

For large T, we have that

1
lim —| = -0
Jim, e =t
! 1 Olnpr Va?+20%—a
m — - =
T—oo T o7} o2 ’

im — =
Tinoo T oo o3/ 32 + 202
0 Va2 +202—a
lim — Inpr=—
T—o00 al’o o?
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Examples: Expected utility

2) Expected utility. The Heston model: An asset X; follows
dXt == ,uXt dt + \/VtXt dZi_L y
th = (’y — th) dt + 5\/th‘/‘/1§ ;

where Z; and W; are two BMs with (Z, W); = pt for -1 < p < 1.

Interested in:

pr + = B [u(Xr)] = EF[X]
_ E]P’[ea fOT VwdZi—5 fOT Ve dt] eauTS(()x
_ Eﬂﬁ’[ef%a(lfa) fOT Ve dt] ea,uTXOa
where .
dP

2
YN _ ey vwdze—% [ vedt
dPlr;
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Examples: Expected utility

The Heston model

1

Am T, T =«

I 17|
T T oy NPT

_ 2 2 —

:_la(l_a)_\/(ﬁ pad)? + 6%a(l — a) — B+ pad
i V(B = padP + 2a(l —a) - B+ pad
lim ——Inpr =
T T8 2/ (B — pad)? + 62a(1 — @)
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Examples: Expected utility

The Heston model

V(B = pad? +8%a(l —a) = B+ pas
27 padf + Pa(l a)
(V/(B = pad)? + 6%a(l — a) — B + pad)?
57 padf § Pa(l a)
ay/(B — pad)? + 52a(l — a) — aff + pa?s

. 0
lim —=—Inpr = —pa

_|_

M Top T T 55 paoft T Pa(l- )
lim i Inpr = @
T—o0 8X0 Xo
lim i Inpr
T—o0 8V0
— 7%6!(1 . a) . \/(5 - poz5)2 + 52(?2(1 - a) - B + pa(S .
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Thank you !
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Introduction
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