Sensitivity Analysis of Long-term Cash flows

Hyungbin Park Worcester Polytechnic Institute

25 April 2017 Fifth Asian Quantitative Finance Conference Seoul, Korea

Table of contents

- Introduction
- 2 Hansen-Scheinkman decomposition
- Sensitivity analysis
 - Delta
 - Rho
 - Vega
- 4 Examples
 - Bond prices
 - Expected utility

In finance, we often encounter the quantity of the form:

$$p_T := \mathbb{E}^{\mathbb{P}}[e^{-\int_0^T r(X_t) dt} f(X_T)]$$
.

Purpose: to conduct a **sensitivity analysis** for the quantity p_T with respect to the perturbation of X for large T.

This sensitivity is useful for long-term static investors and for long-dated option prices.

Let $(\Omega, \mathbb{F}, \mathcal{F}, \mathbb{P})$ be a filtered probability space that has a d-dimensional Brownian motion B with the filtration $\mathcal{F} = (\mathcal{F}_t)_{t \geq 0}$ generated by the B.

A 1

Let $b: \mathbb{R}^d \to \mathbb{R}^d$ and $\sigma: \mathbb{R}^d \to \mathbb{R}^{d \times d}$ be continuous functions and $\xi \in \mathbb{R}^d$. The matrix σ is invertible. Assume that the stochastic differential equation (SDE)

$$dX_t = b(X_t) dt + \sigma(X_t) dB_t, \ X_0 = \xi$$

has a unique strong solution X and that the solution is non-explosive.

A 2

The function $r: \mathbb{R}^d \to \mathbb{R}$ is a continuous function.

A3

The function $f: \mathbb{R}^d \to \mathbb{R}$ is non-negative non-zero measurable.

Given a quadruple of functions (b, σ, r, f) and $\xi \in \mathbb{R}^d$ satisfying A1 - 3, the quantity of interest is

$$p_T = \mathbb{E}_{\xi}^{\mathbb{P}}[e^{-\int_0^T r(X_t) dt} f(X_T)].$$

For the sensitivity w.r.t. the initial value $X_0 = \xi$, we compute

$$\frac{\partial p_T}{\partial \xi}$$

and investigate the behavior of this quantity for large T.

- Why is this an important problem to finance?
 - Hedging market risk
 - How vulnerable to model calibration?

Let X_t^{ϵ} be a perturbed process of X_t

$$dX_t^{\epsilon} = b_{\epsilon}(X_t^{\epsilon}) dt + \sigma_{\epsilon}(X_t^{\epsilon}) dW_t, X_0^{\epsilon} = \xi.$$

The perturbed quantity is given by

$$p_T^{\epsilon} := \mathbb{E}^{\mathbb{P}}[e^{-\int_0^T r(X_s^{\epsilon}) ds} f(X_T^{\epsilon})].$$

For the sensitivity analysis, we compute

$$\left. \frac{\partial}{\partial \epsilon} \right|_{\epsilon=0} p_T^{\epsilon}$$

and investigate the behavior of this quantity for large T.

Fix a quadruple of functions (b, σ, r, f) and $\xi \in \mathbb{R}^d$ satisfying A1 - 3. Consider a pricing operator \mathcal{P} by

$$\mathcal{P}_T f(x) = \mathbb{E}_x^{\mathbb{P}} (e^{-\int_0^T r(X_s) ds} f(X_T))$$

so that the expectation is $p_T = \mathcal{P}_T f(\xi)$. For a positive measurable function ϕ and a real number λ such that

$$\mathcal{P}_T \phi(x) = e^{-\lambda T} \phi(x) \quad \text{for } T > 0, x \in \mathbb{R}^d,$$
 (2.1)

the process

$$M_t^{\phi}:=e^{\lambda t-\int_0^t r(X_s)\,ds}\,rac{\phi(X_t)}{\phi(\xi)}\,,\;0\leq t\leq T$$

is a positive martingale.

A measure \mathbb{Q}^ϕ on each $\mathcal{F}_{\mathcal{T}}$ defined by

$$\mathbb{Q}^{\phi}(A) := \mathbb{E}_{\xi}^{\mathbb{P}}(\mathbb{I}_{A}M_{T}^{\phi})$$

for $A \in \mathcal{F}_T$ is called the *eigen-measure* with respect to ϕ .

This definition is well defined on an infinite horizon because

$$\mathbb{E}_{\xi}^{\mathbb{P}}(\mathbb{I}_{A}M_{t}^{\phi}) = \mathbb{E}_{\xi}^{\mathbb{P}}(\mathbb{I}_{A}M_{s}^{\phi})$$

for any $A \in \mathcal{F}_s$ and $0 \le s < t$.

A 4

There exists a pair (λ, ϕ) of a real number λ and a positive measurable function ϕ satisfying Eq.(2.1) such that the process X is recurrent under the eigen-measure \mathbb{Q}^{ϕ} .

In this case, the discount factor $e^{-\int_0^T r(X_t) dt}$ can be written as

$$e^{-\int_0^T r(X_s) ds} = M_T^\phi e^{-\lambda T} \frac{\phi(\xi)}{\phi(X_T)}$$
.

This expression is referred to as the Hansen-Scheinkman decomposition. We say that (λ,ϕ) , λ , ϕ and \mathbb{Q}^{ϕ} are the recurrent eigenpair, recurrent eigenvalue, recurrent eigenfunction and recurrent eigen-measure, respectively.

A recurrent eigenpair may not exist.

The recurrent eigenpair (λ, ϕ) is unique if existent.

Thus, we use notations M and $\mathbb Q$ instead of M^ϕ and $\mathbb Q^\phi$, respectively.

- (i) Long-Term Risk: An Operator Approach, L. P. Hansen and J.A. Scheinkman, Econometrica, 2009
- (ii) Positive Eigenfunctions of Markovian Pricing Operators: Hansen-Scheinkman Factorization, Ross Recovery, and Long-Term Pricing. L. Qin and V. Linetsky, Operations Research, 2016

A 5

The recurrent eigenfunction ϕ is continuously twice differentiable.

A 6

The process X has an invariant distribution ν under \mathbb{Q} .

A7

The function f is ν -ergodic, that is, f satisfies

$$\mathbb{E}_{\xi}^{\mathbb{Q}}(f/\phi)(X_T) o \int (f/\phi) \, d
u ext{ as } T o \infty$$
,

and the limit is a finite number.

In summary, for any given quadruple of functions (b, σ, r, f) and initial value $\xi \in \mathbb{R}^d$ satisfying A1 - 7, we have constructed

$$X, \mathcal{P}, M, \mathbb{Q}, (\lambda, \phi), \varphi, \nu.$$

Then

$$p_T = \mathbb{E}_{\xi}^{\mathbb{P}} (e^{-\int_0^T r(X_s) ds} f(X_T)) = \phi(\xi) e^{-\lambda T} \cdot \mathbb{E}_{\xi}^{\mathbb{P}} (M_T (f/\phi)(X_T))$$
$$= \phi(\xi) e^{-\lambda T} \cdot \mathbb{E}_{\xi}^{\mathbb{Q}} (f/\phi)(X_T) .$$

What is it good for?

1) Large-time behavior:

$$\lim_{T\to\infty}\frac{1}{T}\ln p_T=-\lambda\,.$$

2) Dependence on the marginal distributions

Sensitivity analysis: Delta

The delta: Intuitively,

$$p_T \simeq e^{\lambda T} \phi(\xi)$$

so that

$$abla_{\xi} \ln
ho_{\mathcal{T}} \simeq rac{
abla_{\xi} \, \phi}{\phi(\xi)}$$

Observe that

$$\nabla_{\xi} \ln p_T = \frac{\nabla_{\xi} p_T}{p_T} = \frac{\nabla_{\xi} \phi}{\phi(\xi)} + \frac{\nabla_{\xi} \mathbb{E}_{\xi}^{\mathbb{Q}}(f/\phi)(X_T)}{\mathbb{E}_{\xi}^{\mathbb{Q}}(f/\phi)(X_T)} .$$

Need to control: as $T \to \infty$,

$$\nabla_{\xi} \mathbb{E}_{\xi}^{\mathbb{Q}}(f/\phi)(X_T)$$

Sensitivity analysis: Delta

Propositioin 3.1

Let (b,σ,r,f) and ξ be a quadruple of functions and an initial value, respectively, satisfying A1 - 7. Assume that the functions $b+\sigma\varphi$ and σ are continuously differentiable with bounded derivatives and that $b+\sigma\varphi$ satisfies the uniform-ellipticity condition. If there exist positive constants $p\geq 2$ and q with 1/p+1/q=1 such that $\mathbb{E}_\xi^\mathbb{Q}\|\sigma^{-1}(X_T)Y_T\|^p$ and $\mathbb{E}_\xi^\mathbb{Q}(f/\phi)^q(X_T)$ are bounded on $0\leq T<\infty$, then $\mathbb{E}_\xi^\mathbb{Q}(f/\phi)(X_T)$ is continuously differentiable by ξ and $\nabla_\xi\,\mathbb{E}_\xi^\mathbb{Q}(f/\phi)(X_T)\to 0$ as $T\to\infty$.

Here,
$$Y_t = (Y_{ij,t})_{1 \le i,j \le d} = (\frac{\partial X_{i,t}}{\partial \xi_i})_{1 \le i,j \le d}$$
 is the first variation process

$$dY_{ij,t} = (b + \sigma\varphi)'_{i}(X_{t})Y_{ij,t} dt + \sum_{k=1}^{d} \sigma'_{ik}(X_{t})Y_{ij,t} dB_{k,t}, Y_{0} = I_{d}$$

and $\|\cdot\|$ the matrix 2-norm.

The rho and vega: Sensitivity with respect to the drift and volatility:

$$dX_t^{\epsilon} = b_{\epsilon}(X_t^{\epsilon}) dt + \sigma_{\epsilon}(X_t^{\epsilon}) dB_t , X_0^{\epsilon} = \xi_{\epsilon}$$

B 1

Let $b_{\epsilon}(x), \, \sigma_{\epsilon}(x), \, r_{\epsilon}(x), \, f_{\epsilon}(x)$ be functions of variable $(\epsilon, x) \in I \times \mathbb{R}^d$ for a neighborhood I of 0 such that for each x, they are continuously differentiable on $\epsilon \in I$ and $b_0(x) = b(x), \, \sigma_0(x) = \sigma(x), \, r_0(x) = r(x),$ $f_0(x) = f(x)$. Let ξ_{ϵ} be a continuously differentiable function of variable $\epsilon \in I$ and $\xi_0 = \xi$.

B 2

For each $\epsilon \in I$, the quadruple of functions $(b_{\epsilon}, \sigma_{\epsilon}, r_{\epsilon}, f_{\epsilon})$ and initial value ξ_{ϵ} satisfy A1 - 7.

The meanings of the following objects are self-explanatory:

$$X^{\epsilon}, \mathcal{P}^{\epsilon}, M^{\epsilon}, \mathbb{Q}^{\epsilon}, (\lambda_{\epsilon}, \phi_{\epsilon}), \varphi_{\epsilon}, \nu_{\epsilon}.$$

We are interested in the perturbed quantity

$$p_T^{\epsilon} := \mathbb{E}_{\xi_{\epsilon}}^{\mathbb{P}}(e^{-\int_0^T r_{\epsilon}(X_s^{\epsilon})ds}f_{\epsilon}(X_T^{\epsilon}))$$

and the long-term behavior of its sensitivity $\frac{\partial}{\partial \epsilon}\Big|_{\epsilon=0} \ln p_T^{\epsilon}$.

Heuristics: when T is large, the term $e^{-\lambda(\epsilon)T}$ dominates the perturbed quantity p_T^ϵ ,

$$p_T^{\epsilon} \simeq e^{-\lambda(\epsilon)T} \phi_{\epsilon} \epsilon(\xi)$$
.

We may then expect

$$\left. \frac{\partial}{\partial \epsilon} \right|_{\epsilon=0} p_T^{\epsilon} \, \simeq \, -\lambda'(0) \, T \cdot e^{-\lambda T} \phi(\xi) + e^{-\lambda T} \, \left. \frac{\partial}{\partial \epsilon} \right|_{\epsilon=0} \phi_{\epsilon}(\xi)$$

Thus,

$$\left. \frac{1}{T} \frac{\partial}{\partial \epsilon} \right|_{\epsilon=0} \ln p_T^{\epsilon} = \frac{1}{T} \frac{\frac{\partial}{\partial \epsilon}|_{\epsilon=0} p_T^{\epsilon}}{p_T} \simeq -\lambda'(0)$$

The expectation p_T^{ϵ} is

$$p_T^{\epsilon} = e^{-\lambda_{\epsilon}T} \phi_{\epsilon}(\xi_{\epsilon}) \mathbb{E}_{\xi_{\epsilon}}^{\mathbb{Q}_{\epsilon}}(f_{\epsilon}/\phi_{\epsilon})(X_T^{\epsilon}).$$

Then

$$\frac{1}{T} \frac{\partial}{\partial \epsilon} \Big|_{\epsilon=0} \ln p_T^{\epsilon} = -\frac{\partial}{\partial \epsilon} \Big|_{\epsilon=0} \lambda_{\epsilon} + \frac{\frac{\partial}{\partial \epsilon} \Big|_{\epsilon=0} \phi_{\epsilon}(\xi_{\epsilon})}{T \cdot \phi(\xi)} + \frac{\frac{\partial}{\partial \epsilon} \Big|_{\epsilon=0} \mathbb{E}_{\xi_{\epsilon}}^{\mathbb{Q}} (f_{\epsilon}/\phi_{\epsilon})(X_T)}{T \cdot \mathbb{E}_{\xi}^{\mathbb{Q}} (f/\phi)(X_T)} + \frac{\frac{\partial}{\partial \epsilon} \Big|_{\epsilon=0} \mathbb{E}_{\xi}^{\mathbb{Q}^{\epsilon}} (f/\phi)(X_T)}{T \cdot \mathbb{E}_{\xi}^{\mathbb{Q}} (f/\phi)(X_T)}.$$

Need to control:

$$\left. \frac{\partial}{\partial \epsilon} \right|_{\epsilon=0} \mathbb{E}_{\xi}^{\mathbb{Q}_{\epsilon}}(f/\phi)(X_{T}^{\epsilon})$$

Sensitivity analysis: Rho

The rho: Let $(b_{\epsilon}, \sigma, r_{\epsilon}, f_{\epsilon})$ and ξ_{ϵ} be a quadruple of functions and an initial value, respectively, satisfying B1 - 2.

The perturbed process X^{ϵ} is

$$dX_t^{\epsilon} = b_{\epsilon}(X_t^{\epsilon}) dt + \sigma(X_t^{\epsilon}) dB_t, \ X_0^{\epsilon} = \xi_{\epsilon}.$$

Define
$$k_{\epsilon} := \sigma^{-1}b_{\epsilon} + \varphi_{\epsilon}$$
 and $k := k_0$.

Sensitivity analysis: Rho

Theorem 1

Let $(b_{\epsilon}, \sigma, r_{\epsilon}, f_{\epsilon})$ and ξ_{ϵ} be a quadruple of functions and an initial value, respectively, satisfying B1 - 2. Assume that $\nabla \phi_{\epsilon}(x)$ (thus, $k_{\epsilon}(x)$) is continuously differentiable by ϵ on I for each x and that there exists a function $g: \mathbb{R}^d \to \mathbb{R}$ such that $|\frac{\partial k_{\epsilon}(x)}{\partial \epsilon}| \leq g(x)$ on $(\epsilon, x) \in I \times \mathbb{R}^d$. Suppose that the following conditions hold.

(i) There exist positive constants a, c and ϵ_0 such that for all T>0

$$\mathbb{E}_{\xi}^{\mathbb{Q}} e^{\epsilon_0 \int_0^T g^2(X_s) \, ds} \leq c \, e^{aT} \, .$$

There exist positive constants $p \ge 2$ and q with 1/p + 1/q = 1 satisfying the following:

- (ii) For each T>0, there is a positive number ϵ_1 such that $\mathbb{E}^{\mathbb{Q}}_{\xi} \int_0^T g^{p+\epsilon_1}(X_t) dt$ is finite.
- (iii) $\mathbb{E}_{\varepsilon}^{\mathbb{Q}}(f/\phi)^q(X_T)$ is bounded on $0 \leq T < \infty$.

Sensitivity analysis: Rho

Theorem 2 (Continued)

Then, $\mathbb{E}_{\xi}^{\mathbb{Q}_{\epsilon}}(f/\phi)(X_T^{\epsilon})$ is continuously differentiable on $\epsilon \in I$ and

$$\lim_{T\to\infty}\frac{1}{T}\left.\frac{\partial}{\partial\epsilon}\right|_{\epsilon=0}\mathbb{E}^{\mathbb{Q}_{\epsilon}}_{\xi}(f/\phi)(X_T^{\epsilon})=0$$

is obtained.

Sensitivity analysis: Vega

The vega

1st approach: Malliavin calculus with bounded-derivative coefficients. Classical approach for sensitivity analysis

2nd approach: the Lamperti transform for univariate processes. It converts the perturbation of the diffusion term into the drift and the initial value.

Sensitivity analysis: Vega

Conclusion:

Initial value perturbation: eigenfunction determines the zeroth-order growth rate

$$\lim_{T\to\infty} \nabla_{\xi} \ln p_T = \frac{\nabla_{\xi} \phi}{\phi(\xi)}$$

Drift and volatility perturbations: eigenvalue determines first-order growth rate

$$\lim_{T o \infty} rac{1}{T} \left. rac{\partial}{\partial \epsilon} \right|_{\epsilon = 0} \ln p_T^{\epsilon} = -\lambda'(0)$$

Examples

- 1) Bond prices
- 2) Expected utilities

Examples: Bond prices

1) Bond prices: The CIR short-interest rate model

Under a risk-neutral measure \mathbb{P} , the interest rate r_t follows

$$dr_t = (\theta - ar_t) dt + \sigma \sqrt{r_t} dB_t, \ 2\theta > \sigma^2.$$

The short-interest rate option price

$$p_T := \mathbb{E}^{\mathbb{P}}[e^{-\int_0^T r_t \, dt} f(r_T)]$$

This is the bond price when $f \equiv 1$.

Want to know the behavior for large T of

$$\frac{\partial p_T}{\partial \theta}$$
, $\frac{\partial p_T}{\partial a}$, $\frac{\partial p_T}{\partial \sigma}$

Examples: Bond prices

Assume: f(r) is a nonzero nonnegative continuous function on $r \in [0, \infty)$ with the polynomial growth rate.

The associated second-order equation is

$$\mathcal{L}\phi(r) = \frac{1}{2}\sigma^2r\phi''(r) + (\theta - ar)\phi'(r) - r\phi(r) = -\lambda\phi(r)$$
.

The recurrent eigenvalue and its eigenfunction are

$$(\lambda, \phi(r)) := (\theta \kappa, e^{-\kappa r})$$

where
$$\kappa := \frac{\sqrt{a^2 + 2\sigma^2} - a}{\sigma^2}$$
.

Examples: Bond prices

For large T, we have that

$$\begin{split} &\lim_{T \to \infty} \frac{1}{T} \ln p_T = -\theta \kappa \;, \\ &\lim_{T \to \infty} \frac{1}{T} \cdot \frac{\partial \ln p_T}{\partial \theta} = -\frac{\sqrt{a^2 + 2\sigma^2} - a}{\sigma^2} \;, \\ &\lim_{T \to \infty} \frac{1}{T} \cdot \frac{\partial \ln p_T}{\partial a} = \frac{\theta \left(\sqrt{a^2 + 2\sigma^2} - a\right)}{\sigma^2 \sqrt{a^2 + 2\sigma^2}} \;, \\ &\lim_{T \to \infty} \frac{1}{T} \cdot \frac{\partial \ln p_T}{\partial \sigma} = \frac{\theta \left(\sqrt{a^2 + 2\sigma^2} - a\right)^2}{\sigma^3 \sqrt{a^2 + 2\sigma^2}} \;, \\ &\lim_{T \to \infty} \frac{\partial}{\partial r_0} \ln p_T = -\frac{\sqrt{a^2 + 2\sigma^2} - a}{\sigma^2} \;. \end{split}$$

Examples: Expected utility

2) **Expected utility**. The Heston model: An asset X_t follows

$$dX_t = \mu X_t dt + \sqrt{v_t} X_t dZ_t ,$$

$$dv_t = (\gamma - \beta v_t) dt + \delta \sqrt{v_t} dW_t ,$$

where Z_t and W_t are two BMs with $\langle Z, W \rangle_t = \rho t$ for $-1 \le \rho \le 1$.

Interested in:

$$p_T := \mathbb{E}^{\mathbb{P}}[u(X_T)] = \mathbb{E}^{\mathbb{P}}[X_T^{\alpha}]$$

$$= \mathbb{E}^{\mathbb{P}}[e^{\alpha \int_0^T \sqrt{v_t} dZ_t - \frac{\alpha}{2} \int_0^T v_t dt}] e^{\alpha \mu T} S_0^{\alpha}$$

$$= \mathbb{E}^{\hat{\mathbb{P}}}[e^{-\frac{1}{2}\alpha(1-\alpha)\int_0^T v_t dt}] e^{\alpha \mu T} X_0^{\alpha}$$

where

$$\left. \frac{d\hat{\mathbb{P}}}{d\mathbb{P}} \right|_{\mathcal{F}_{\tau}} = e^{\alpha \int_{0}^{T} \sqrt{v_{t}} dZ_{t} - \frac{\alpha^{2}}{2} \int_{0}^{T} v_{t} dt}.$$

Examples: Expected utility

The Heston model

$$\lim_{T \to \infty} \frac{1}{T} \frac{\partial}{\partial \mu} \ln p_T = \alpha$$

$$\lim_{T \to \infty} \frac{1}{T} \frac{\partial}{\partial \gamma} \ln p_T$$

$$= -\frac{1}{2} \alpha (1 - \alpha) \cdot \frac{\sqrt{(\beta - \rho \alpha \delta)^2 + \delta^2 \alpha (1 - \alpha)} - \beta + \rho \alpha \delta}{\delta^2}$$

$$\lim_{T \to \infty} \frac{1}{T} \frac{\partial}{\partial \beta} \ln p_T = \frac{\sqrt{(\beta - \rho \alpha \delta)^2 + \delta^2 \alpha (1 - \alpha)} - \beta + \rho \alpha \delta}{\delta^2 \sqrt{(\beta - \rho \alpha \delta)^2 + \delta^2 \alpha (1 - \alpha)}}$$

Examples: Expected utility

The Heston model

$$\begin{split} \lim_{T \to \infty} \frac{1}{T} \frac{\partial}{\partial \delta} \ln p_T &= -\rho \alpha \cdot \frac{\sqrt{(\beta - \rho \alpha \delta)^2 + \delta^2 \alpha (1 - \alpha)} - \beta + \rho \alpha \delta}{\delta^2 \sqrt{(\beta - \rho \alpha \delta)^2 + \delta^2 \alpha (1 - \alpha)}} \\ &\quad + \frac{(\sqrt{(\beta - \rho \alpha \delta)^2 + \delta^2 \alpha (1 - \alpha)} - \beta + \rho \alpha \delta)^2}{\delta^3 \sqrt{(\beta - \rho \alpha \delta)^2 + \delta^2 \alpha (1 - \alpha)}} \\ \lim_{T \to \infty} \frac{1}{T} \frac{\partial}{\partial \rho} \ln p_T &= -\frac{\alpha \sqrt{(\beta - \rho \alpha \delta)^2 + \delta^2 \alpha (1 - \alpha)} - \alpha \beta + \rho \alpha^2 \delta}{\delta \sqrt{(\beta - \rho \alpha \delta)^2 + \delta^2 \alpha (1 - \alpha)}} \\ \lim_{T \to \infty} \frac{\partial}{\partial X_0} \ln p_T &= \frac{\alpha}{X_0} \\ \lim_{T \to \infty} \frac{\partial}{\partial \nu_0} \ln p_T &= -\frac{1}{2} \alpha (1 - \alpha) \cdot \frac{\sqrt{(\beta - \rho \alpha \delta)^2 + \delta^2 \alpha (1 - \alpha)} - \beta + \rho \alpha \delta}{\delta^2} \;. \end{split}$$

Thank you !

Related articles

- Borovicka, J., Hansen, L.P., Hendricks, M., Scheinkman, J.A.: Risk price dynamics. Journal of Financial Econometrics 9(1), 3-65 (2011)
- Fournie, E., Lasry J., Lebuchoux, J., Lions P., Touzi, N.: Applications of Mallivin calculus to Monte Carlo methods in finance. Finance Stoch. **3**, 391-412 (1999)
- Hansen, L.P., Scheinkman, J.A.: Long-term risk: An operator approach. Econometrica **77**, 177-234 (2009)
- Hansen, L.P., Scheinkman, J.A.: Pricing growth-rate risk. Finance Stoch. **16**(1), 1-15 (2012)